
This document is an historical remnant. It belongs to the collection Skeptron Web Archive (included in
Donald Broady's archive) that mirrors parts of the public Skeptron web site as it appeared on 31 December
2019, containing material from the research group Sociology of Education and Culture (SEC) and the
research programme Digital Literature (DL). The contents and file names are unchanged while character and
layout encoding of older pages has been updated for technical reasons. Most links are dead. A number of
documents of negligible historical interest as well as the collaborators’ personal pages are omitted.

The site's internet address was since Summer 1993 www.nada.kth.se/~broady/
and since 2006 www.skeptron.uu.se/broady/sec/.



  2002-05-17 
  Jan Danils, Jöran Stark 

  1 

SCAM STANDARDIZED CONTENT ARCHIVE MANAGEMENT

 
 
 
 

SCAM - STANDARDIZED CONTENT ARCHIVE MANAGEMENT 
(draft) 

 
 
 
 

 

1 Abstract  

During your time in school, university and work, you produce and acquire a lot of valuable 
information in the form of documents, web links, book references and other resources. But how 
do you archive, organize and bring with you this information? You have increased difficulty 
locating specific information as your resource library grows. As the amount of information 
increases, so does the need to organize and describe that information in order to keep control over 
it. What you need is a way to add information about the information - metadata. 

SCAM is, as the name implies, a web-based content archive with many similarities with a 
distributed filesystem, but with the ability to attach metadata to named resources. A resource can 
be almost anything from a file to a data object, or simply a reference to a document or a book. A 
resource’s metadata describes additional information such as creator, keywords, conclusions, 
annotations, etc., which are properties that an ordinary filesystem lacks the ability to express. 
SCAM supports all metadata vocabularies denotable by Resource Description Framework (RDF). 

SCAM highly emphasizes on portability and flexibility, which in turn relies on standardization of 
both design and implementation. Efforts on this subject have been one of main challenges during 
the development. Standards involve metadata vocabularies, content packaging, authentication of 
users and access control, system interfaces, etc. 

 



  2002-05-17 
  Jan Danils, Jöran Stark 

  2 

SCAM STANDARDIZED CONTENT ARCHIVE MANAGEMENT

 

2 Introduction 

SCAM is entirely implemented in Java and Java Server Pages. One of the main goals is to use 
standards where applicable to increase interoperability and portability. SCAM is purely based on 
open-source software; an object-relational database manager PostgreSQL (acts as an archive-
backend) and Apache’s servlet server Tomcat (acts as a frontend). The choice of Postgre, besides 
the fact that it is free, is based on its performance, reliability and its ability of row locking. The 
ability of row locking is vital since it increases concurrent database access. 

SCAM is developed as a core repository for different types of resources. The term resource is not 
well defined which creates a need of flexible storage handler. RDF can express any data structure 
that can be represented by a graph. Storing native RDF in the database provides a flexible 
mechanism for storing different sets of metadata. The problem with such flexibility is not in the 
storage, but rather in the complexity of the presentation of the metadata. Standardization of 
vocabularies and organization decreases this complexity, but to visualize this information is still a 
challenge. Different resources and vocabularies may require different presentations and the 
context in which the resource is accessed may also influence presentation.  

A separate login handler provides user authentication and also grants portfolios to registered 
users. This means that no administration of new users is necessary as long as the users in question 
are included in the user repository. An Access Control List (ACL) describes what permissions 
users (or groups of users) have on a specific resource, allowing cooperative work and/or privacy. 

 

3 Design 

The implementation of SCAM employs a multi-level tier design. In this chapter we define the 
responsibilities of each significant tier and hint to vital Java classes. Refer to JavaDoc for a more 
extensive documentation. 



  2002-05-17 
  Jan Danils, Jöran Stark 

  3 

SCAM STANDARDIZED CONTENT ARCHIVE MANAGEMENT

3.1 Storage Tier 

3.1.1 Responsibilities 
Provide storage mechanisms. 
Provide transaction control. 

3.1.2 Description 
A Database object acts as an adapter to the database application that is configured for the system. 
This object is responsible for providing Connection objects when accessing the database, and to 
provide mechanisms for keeping the database consistent during a request, Transaction Control.  
Pool design pattern is used for handling database connections, implemented by ConnectionPool 

HTTP 

   WebDAV 

LDAP Server 

JSP 

H
T

M
L
 

X
M

L
 

X
M

L
 

Servlet Server 

Clients 
 

Web browsers, 
MS Explorer W2k, 

DAVExplorer, 
WebDrive, etc 

JXTA RMI 
Registry 

 
Edutella 

 

 
Application X

 

Content Manager 

File System 

Metadata Manager 

SQL 
Database 

Organization Manager 

User Authentication 
and Access Control 

LDAP 

 System Model 

IMS Content Packaging Dublin Core/RDF 

Fi
le

 tr
an

sf
er

 



  2002-05-17 
  Jan Danils, Jöran Stark 

  4 

SCAM STANDARDIZED CONTENT ARCHIVE MANAGEMENT

objects. The main advantage with this solution is the ability of keeping track of the total numbers 
of concurrent active connections, since databases has some limit in concurrent active 
connections. Another advantage is the ability to reuse connections between serialized queries 
since generating new connections is time consuming. [See package 
scam.repository.database.pool] 

A Resource is defined by its state information and metadata, some resources are also defined to 
have a content (i.e. files). A request involves one or more resources in the requested operation, so 
the transaction control has to be able to include several resources. The transaction controller 
provided by the database could implement the transaction control mechanism. But due to the fact 
that databases are not well suited for storing file content we have chosen to separate content from 
state information and metadata. This introduces a new problem; the transaction control 
mechanism has to keep consistency for two separate sub system. A Content Store is delegated to 
handle the content the same way as the Database handles state information and metadata, i.e. 
implementing transaction control functionality. [See package scam.repository.content and 
scam.repository.database.Database] 

Normally a request (from a client) is a request to perform an operation on a specified Resource, 
this Resource responds by executing a series of commands. If these commands involve the 
Content Store and the Database, or other Resources, the Resource starts a transaction by issuing 
startTransaction. If all commands completes successfully the Resource ends the transaction by 
issuing a commit, otherwise the Resource issues a rollback to undo the transaction.  

A problem with keeping multiple sub-systems consistent is that if one of them fails to commit 
when others already has committed successfully, you cannot undo the complete transaction. 
Committing the Database before the Content Store reduces the effect of having this system 
partially committed; if Database fails to commit then both is rolled back, if the Database 
successfully commits but the Content Store fails then only the Content Store can be rolled back. 
The possibility for a failure in committing the Content Store can be considered small since it 
operates on the local file system. The consequence of such a failure is, in the worse case, an 
“orphan” in the Content Store. By matching entries in the database with entries in the Content 
Store these orphans can be detected and manually removed.   

A design goal is to include the ability to handle custom related metadata sets in addition to the 
internal metadata set. Dublin Core (DC) metadata set with Canberra Qualifiers (DCQ) defines 
the internal (native) metadata set used by SCAM. XML could be used to express this internal 
metadata set and many other metadata sets. One of the strength with XML is that data is 
represented in a hierarchy of elements stating beginning and end of data. The XML model is well 
suited for sending data in a serialized form. But storing hierarchies, such as XML, in a relational 
database is not trivial since the hierarchy itself implies the relations between the elements. 

Resource Description Framework (RDF) provides mechanisms for describing relations between 
elements. RDF can express the same metadata sets and can easily be stored in a database for 
searches; it expresses relations as a set of triples, {subject, predicate, object}. Each triple is a 
statement about a resource; the resource is defined by the subject, what is stated is defined by the 
predicate and the value of the statement is defined by the object. The object can be represented 
by another statement. Since the RDF model is represented by a set of triples it is an “easy” task to 



  2002-05-17 
  Jan Danils, Jöran Stark 

  5 

SCAM STANDARDIZED CONTENT ARCHIVE MANAGEMENT

serialize the model into a database; store each statement as a triple using a table of three columns. 
[See scam.repository.ModelHandlerImpl] 

3.2 Application tier 

3.2.1 Responsibilities 
business logic and rules 
access control 
user authentication 
transaction handling (atomicity/consistency) 

3.2.2 Description 

A resource, as defined by SCAM, consist of the following parts: 
• Access Control List (ACL); defines which principals having what permissions. 
• Locks; user defined locking of resources (see WebDAV specification for more details). 
• Metadata Model; the model is an implementation by Stanford University, which complies 

with the W3C/RDF API. 
• Internal data such as name, owner, identifier (id). 

A ResourceFactory fetches a Resource from the database according to an URL, e.g. 
“/users/documents/index.html”. The virtual organization of the database is similar to that of an 
ordinary filesystem, i.e. a strict hierarchical tree. In other words we have resources that can 
contain other resources (containers) and other resources that can have content (files) and so forth. 
SCAM currently implements the following semantically different types of resources: 

1. Root 
2. Library 
3. Portfolio 
4. Folder 
5. File 
6. Url 

Resources of type 1-4 are container resources similar to a folder in a file system. The Root-
resource is the grandparent of all other resources. A user’s personal collection of resources is 
denoted Portfolio. A Library is a collection of Portfolios and other Libraries. The difference 
between a File- and a Url-resource is that a File can have content. A Url is simply a reference to 
another Resource, either locally stored in the system or to any other component denotable by an 
URL. A Resource contains a set of atomic operations/methods as defined in 
scam.share.Resource. 

3.2.3 User Authentication 
The application tier supports multiple user authentication schemes. You can define either local or 
remote authentication depending on in which environment the system is located. SCAM is 
designed to be either a stand-alone application or to be a part of another system that has external 
user authentication capabilities. For instance an LDAP authentication design is easily introduced. 
[See scam.webdav.login.Login]. 



  2002-05-17 
  Jan Danils, Jöran Stark 

  6 

SCAM STANDARDIZED CONTENT ARCHIVE MANAGEMENT

3.2.4 Access Control 

The ResourceFactory is responsible for controlling read-permission of the caller before returning 
the resource. After this, the resource itself performs permission control accordingly. The ACL 
functionality is defined according to specifications of java.security.Acl. [See 
scam.repository.AclHandlerImpl] 

3.2.5 Locking 
These user defined locks is not the same as the row locking in the database. This functionality 
exists to prevent the lost-update problem. If a user A downloads a certain file for editing and 
another user B does the same, we get two instances of the same file. Then A uploads her file with 
changes made, followed by B. B will then overwrite the changes made by A. Instead A first lock 
the resource telling all others that “I am currently working with this”. If B then tries to lock it, the 
system denies this request. Locks have timeout, which means that locks have to be refreshed 
before timeout occurs or the lock is automatically removed.  

We do not use the database’s internal locking of rows because of deadlock/starvation problems. If 
the client does not unlock the resource, the resource will never be unlocked denying all further 
locking requests. [See scam.repository.LockHandlerImpl] 

3.2.6 Metadata Model 

SCAM uses RDF as a carrier of metadata, which means that any metadata that can be expressed 
with RDF can be stored in the database. The system currently has no validation of RDF schemas, 
nor does it validate the metadata itself. This is considered to be the responsibility of a metadata 
editor. 

The system natively understands and uses the Dublin Core metadata set. Other vocabularies can 
be stored, but not natively understood by SCAM. [See scam.repository.ModelHandlerImpl]  

We have chosen to represent the organization of resources separately outside the RDF model. 
This is due to the complexity of managing consistency between resources using the W3C RDF 
API. The only native organizational relation between resources is “parent of”. This choice is 
subject of change. 

3.2.7 Business rules 
SCAM defines a set of organizational rules that must be valid before execution of operations can 
take place. This involves issues like consistent relations between resources, access- and lock-
control, and “garbage collection”. The latter covers things like removing children of a container 
resource when the container resource itself is removed, in other words removing resource 
orphans (unrelated resources). [See scam.share.Resource]. 

3.2.8 Transaction Control 

If a resource is fetched for the purpose of editing/changing, the ResourceFactory extracts it in a 
locked state (locked in the database) to preserve consistency. If a transaction deals with multiple 
resources, problems like deadlock and starvation must be considered. The order in which the 
resources are locked is important to prevent this. We have solved this issue by always locking 



  2002-05-17 
  Jan Danils, Jöran Stark 

  7 

SCAM STANDARDIZED CONTENT ARCHIVE MANAGEMENT

them top-down, i.e. parent before children. However, this method is only applicable when a 
resource is part of one organization. 

This factory-design induces a rather complicated transaction-design. Resources are only allowed 
to be locked in a “known environment” in order to ensure that no resource is left locked in the 
database due to some failure. In other words, a resource must never leave the repository-package 
in a locked state. This means that a proxy retrieves an unlocked resource from RF, perform the 
requested operation on the resource that first locks itself before actually executing, and finally 
unlocks itself before returning. The same is true in the case of multiple resource operation. [See 
scam.repository.ResourceImpl and scam.repository.ResourceFactoryImpl]. 

 

3.3 Presentation tier 

3.3.1 Responsibilities 
Interface between client and repository 

3.3.2 Description 

Different clients and protocols require different presentations and interfaces. In SCAM we define 
each of these as proxies, request interceptors that translates client-specific protocols to SCAM’s 
internal object model and back, separating system logic from client capabilities. Several proxies 
can be used concurrently to access the repository. 

SCAM defines a HTTP proxy with two branches, one for the lightweight browser client, and the 
other for a WebDAV client. In the heart of this proxy we have a Java Servlet that acts as a 
Controller. The proxy-methodology is as follows: 

1. The Controller receives a HTTP request.  
2. A login-handler is deployed by the Controller to identify and authenticate the caller. If no 

user can be extracted from the request or session, we have an anonymous user. This 
handler can also be used to prompt the caller to identify herself.  

3. A method factory is used to identify and create the appropriate method, both for 
WebDAV and core HTTP requests. A class represents each operation defined by SCAM. 

4. The Controller executes the method created. 
5. The method parses the request for operation parameters. The repository package is used to 

create and manipulate resources. Some methods forwards requests to Java Server Pages. 
6. The response from the repository is translated to the appropriate response format. 

A vision of SCAM is to implement several other proxies when demand arises. You could think of 
RMI-, SOAP- or CORBA-clients wanting access, or perhaps a wrapper for FTP-clients. SCAM 
will also adapt the JXTA-based peer-to-peer Edutella network for metadata queries in future 
releases. 

 

4 Further reading 
SCAM is still considered to be in its initial stage and the implementation has a prototype status. 



  2002-05-17 
  Jan Danils, Jöran Stark 

  8 

SCAM STANDARDIZED CONTENT ARCHIVE MANAGEMENT

Further documentation and software can be found at SCAM’s official homepage at KTH-KMR 
[http://kmr.nada.kth.se/scam] and at SourceForge [http://sourceforge.net/projects/scam]. 


