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1 From description to inference� Descriptive procedures (means, variances, eigenvalues, etc.).1) They do not depend on sample size.2) They lead to descriptive conclusions.� Inference procedures (signi�cance tests, con�dence intervals, etc.).They attempt to extend descriptive conclusions.1) They depend on sample size.2) They lead to inductive conclusions.
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Statistical modeling: as assumption-free as possible.1) Instead of normal modeling,prefer combinatorial framework.2) Instead of general modeling (e.g. \general linear model")prefer speci�c modeling,i.e. put the statistical model on the speci�c data set relevant to thehypothesis of interest.
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2 Signi�cance Tests in MCAProblem: for an axis, compare the mean of subcloud k (subcloud ofthe individuals who have chosen modality k) to 0 (overall mean).� Test-values (combinatorial framework)Test statistic: Tk = pn� 1 ykpnk=(n� nk)with n size of the overall cloud; nk size of subcloud k; yk coordinateof modality k on axis.For large n and nk=n far from 0 and 1: If jTkj � z�, the mean ofsubcloud k di�ers signi�cantly from 0 (the overall mean) at level �,hence the conclusion: for the axis, with respect to the mean,subcloud k is atypical (at level �) of the overall cloud of individuals.Property : T 2k = (n� 1) cos2 �k (cos2 �k is the Qlt of modality k)
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Culture example. For axis 1, compare the mean of each age class tothe overall mean.Test values. 16:3 (p < :001); 5:7 (p < :01) ; 1:5 NS;�0:4 NS ; �6:5 (p < :01); �17:8 (p < :001)Conclusions� For Axis 1, with respect to the mean, Class 1 is highly atypical ofthe whole cloud, on the right side of axis; Class 6 is highly atypicalon the left side.� Class 2 is fairly atypical of the whole cloud, on the right side ofaxis; Class 5 is fairly atypical on the left side.� One cannot assert that Class 1 is atypical of the whole cloud on theright side of axis; that Class 6 is atypical on the left side.
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� t{tests (traditional sampling framework)Speci�c statistical modeling : Each age class is a random sample ofthe corresponding population age class. True means are the means ofclasses in the population on axis 1.Results. 18:2 (p < :001); 6:0 (p < :01) ; 1:6 NS;�0:4 NS ; �6:4 (p < :01); �16:6 (p < :001)Conclusions� One is nearly certain that the true mean on axis 1 of Class 1 is onthe right side; that the true mean of Class 6 is on left side.� One is fairly certain that the true mean of Class 2 is on the rightside of axis 1; that the true mean of Class 5 is on left side.� One cannot ascertain that the true mean of Class 3 is on the rightside of axis 1; that the true mean of Class 4 is on left side.
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Remarks� Both tests lead to concordant conclusions.� The two Warnings about signi�cance testsWarning 1. Evidence of e�ect (statistically signi�cant) is not proof oflarge e�ect (especially for a large sample).Warning 2. No evidence of e�ect (non-signi�cant) is not proof of noe�ect, or even of small e�ect (especially for a small sample).(Traditional inference handles poorly the smallness hypothesis)

Con�dence intervals for the true means at level :05 (traditionalsampling framework):[+0:34;+0:43]; [+0:08;+0:15]; [�0:01;+0:07][�0:06;+0:04]; [�0:24;�0:13]; [�0:46;�0:36]
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Bayesian frameworkThe Bayesian framework allows assessing the probabilities (i.e.measures of uncertainty) of the hypotheses of interest. Assuming\noninformative" (i.e. neutral) prior distributions, the followingBayesian reinterpretations hold for the inference on means:1) Observed signi�cance levels (p-values): If p denotes the usualtwo-sided observed signi�cance level, the probability that the truemean lies on the side of the observed mean is 1� p=2.2) The probability that the true mean lies inside the observedcon�dence interval at level � is 1� �.
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3 Con�dence ellipsesFor the modality mean point k in a principal plane, the approximatecon�dence ellipse at level � is the inertia ellipse with coe�cient kappa� =p�2�=pnkwhere �2� is the � upper value of the �2 distribution with 2 d.f.For � = :05, �2� = 5:991. The con�dence ellipse at level :05 can beobtained by shrinking the concentration ellipse (i.e. inertia ellipsewith � = 2) by the factor p5:991=2pnk = 1:22=pnk.The greater the size class, the smaller the � coe�cient, the smallerthe ellipse.
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Culture example: Con�dence ellipses in plane 1-2 for the mean pointsof the 6 age classes� coe�cients are: 0:12; 0:10; 0:11; 0:12; 0:14; 0:11For each k, the con�dence ellipse tells us about the location of thetrue mean point of class k: The greater the size class nk, the morecertain we are about the location of the true mean point around theobserved mean point.Bayesian reinterpretation of con�dence ellipesAgain assuming \noninformative priors", con�dences can beinterpreted as probabilities. For modality k, the probability that thetrue mean point lies inside the ellipse at level � is equal to 1� �.
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Culture example. Plane 1-2: con�dence ellipses at level 0.05 for the six age classes
1�1
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