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Abstract 
Prytz, J. 2007. Speaking of Geometry. A study of geometry textbooks and literature on ge-
ometry instruction for elementary and lower secondary levels in Sweden, 1905-1962, with a 
special focus on professional debates. Uppsala Dissertations in Mathematics 46. 210 pp. 
Uppsala. ISBN 978-91-506-1938-6. 

This dissertation deals with geometry instruction in Sweden in the period 1905-1962. The 
purpose is to investigate textbooks and other literature used by teachers in elementary schools 
(ES) and lower secondary schools (LSS) – Folkskolan and Realskolan – connection to geome-
try instruction. Special attention is given to debates about why a course should be taught and 
how the content should be communicated. 

In the period 1905-1962, the Swedish school system changed greatly. Moreover, in this pe-
riod mathematics instruction was reformed in several countries and geometry was a major 
issue; especially, classical geometry based on the axiomatic method. However, we do not 
really know how mathematics instruction changed in Sweden. Moreover, in the very few 
works where the history of mathematics instruction in Sweden is mentioned, the time before 
1950 is often described in terms of “traditional”, “static” and “isolation”. 

In this dissertation, I show that geometry instruction in Sweden did change in the period 
1905-1962: geometry instruction in LSS was debated; the axiomatic method and spatial intui-
tion were major issues. Textbooks for LSS not following Euclid were produced also, but the 
axiomatic method was kept. By 1930, these alternative textbooks were the most popular. 

Also the textbooks in ES changed. In the debate about geometry instruction in ES, visu-
alizability was a central concept. 

Nonetheless, some features did not change. Throughout the period, the rationale for keep-
ing axiomatic geometry in LSS was to provide training in reasoning. An important aspect of 
the debate on geometry instruction in LSS is that the axiomatic method was the dominating 
issue; other issues, e.g. heuristics, were not discussed. I argue that a discussion on heuristics 
would have been relevant considering the final exams in the LSS; in order to succeed, it was 
more important to be a skilled problem solver than a master of proof. 
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Part A – Writing a history of geometry 
instruction 

Introduction 
An important event in the history of Western societies is the introduction of 
Hindu-Arabic numerals, the decimal number system, symbolic algebra and 
analytical geometry – processes that took place during the 15th, 16th and 17th 
centuries. These mathematical innovations paved the way for calculations 
and applications in science, trade, finance and navigation that were hard to 
execute only by means of classical Euclidean geometry and the Roman 
number system based solely on positive whole numbers.1 Without any par-
ticular references, I think it is fair to say that these innovations have become 
indispensable parts of economics, engineering, science and other related 
practices. Moreover, this conflation has constituted a source for arguments 
regarding the content of school mathematics; courses in mathematics are, in 
some way, supposed to match applications in economics, engineering and 
science, but also everyday situations where you need arithmetic, algebra and 
coordinate geometry.2 

In this perspective, courses in classical Euclidean geometry conveyed in 
an axiomatic style, e.g. via Euclid’s Elements, appear to be a part of another 
context. If we consider common Swedish textbooks in elementary geometry 
from the 18th century to the early 1960’s, the main point is the logical edifice 

                               
1 See for instance Swetz (1987), Dear (2001), Crosby (1997). Swetz (1987) discusses the 
importance of the introduction of arithmetic with Hindu-Arabic numerals in connection with 
the emerging merchant houses in Renaissance Italy. He underscores the merchants’ growing 
interest in measurements of time, distance and capacity, but also their attempts to solve prob-
lems by means of numerical data, computations and empirical investigations.[Swetz (1987), 
pp. 291-295] Dear (2001) discusses the Scientific Revolution during the 17th century. He 
points out that the works of such pivotal figures such as Descartes and Newton not only 
caused an intellectual shift regarding the understanding of the universe; the mathematical 
methods in their dissertations also constituted a shift in how scientist worked in natural phi-
losophy.[Dear (2001), pp. 168-170] Crosby (1997) adopts an even broader perspective and 
discusses how a new outlook on time, space and the physical reality developed in the coun-
tries of western Europe during the period 1300-1600. According to Crosby (1997), this new 
outlook was characterized by a predilection for visualizations and quantitative descriptions of 
the physical reality. Crosby (1997) discusses examples from art, music, bookkeeping, trade, 
navigation, cartography and astronomy. [Crosby (1997), pp. 185-195] 
2 See the background chapter of this dissertation for a description of the argumentation of the 
late 19th century and the first half of the 20th century.  
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of definitions, axioms, constructions, theorems and proofs. Furthermore, the 
ambition of several of the authors seems to have been to provide editions of 
Euclid’s Elements. In these textbooks we find no, or very few, examples of 
applications. Calculations of lengths, areas and volumes are treated briefly or 
not at all.3 By putting the logical structure at the fore, the textbook authors 
seem to have taken aim at purely logical aspects of mathematics. Indeed, a 
common argument for having courses in axiomatic geometry has been that 
they provide excellent training in reasoning.4  

During the 19th and 20th centuries, courses in axiomatic geometry were 
criticized in several western countries. The critics downgraded the effects on 
the students’ ability to reason and considered the courses too theoretical and 
inappropriate as preparation for education in technology and science.5 How-
ever, extensive courses in axiomatic geometry, in some form, remained a 
part of the curricula in several European countries during the first half of the 
20th century. In Sweden, extensive courses in axiomatic geometry were kept 
at lower secondary level until the early 1960’s. 

At least in the Swedish context, this may seem a bit awkward, especially 
if we consider the first half of the 20th century and the new curriculum of 
1905. In this curriculum, sciences and mathematics together with modern 
languages were the major subjects at lower secondary level. Classical lan-
guages, on the other hand, were dropped completely. Moreover, lower sec-
ondary education contained just one program; this program should prepare 
the students for vocational educations and working life as well as further 
studies at upper secondary level and university. Thus, the course program in 
mathematics, axiomatic geometry included, functioned as a preparation for 
further studies at upper secondary level as well as various vocational educa-
tions. Specialized practical programs at the lower secondary schools were 
introduced in the 1930’s; however, until the late 1940’s, a great majority of 
the students, 90 percent or more, followed the curriculum in mathematics 
that included axiomatic geometry.6 

The profile of the lower secondary schools was underscored by their 
name – Realskola – a name that was introduced in 1905. Here we may dis-
                               
3 See for instance Strömer (1744), Wolff (1793), Lindman (1867), Asperén (1896), Vinell 
(1898), Sjöstedt (1936) and Olson (1940). The last edition of Strömer’s geometry textbook 
was printed in 1884.  
4 See the background chapter in this dissertation. 
5 Of course, this type of criticism was conveyed well before the 19th century. And of course, 
there were geometry textbooks focused on applications before the 19th century as well. 
Kokomoor (1928a) and Kokomoor (1928b) provide am illuminative treatment of geometry 
and geometry instruction of the 17th century. A good example of a pre 19th century textbook in 
applied geometry is Clairaut (1744). This particular textbook was also translated into Swed-
ish. For further details about arguments about mathematics instruction during the 19th and 20th 
centuries, see the background chapter in this dissertation.   
6 See the background chapter for a description of the Swedish schools system. The figure 90 
percent is based on the statistics regarding the final exams of Realskolan that I display in Part 
E of this thesis. 
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cern an ambition among the politicians responsible to distance the new cur-
riculum from past times; times when the humanities, especially Latin and 
Greek, dominated the curricula at secondary level, especially the course pro-
gram leading to the prestigious state universities. However, this ambition 
encompassed not only politicians and leading actors in the public debate. 
Secondary school teachers in science, who took part in the public debate, can 
also be considered a progressive group in this respect. They not only wanted 
to reform the school system with respect to science; they also longed for a 
new outlook on society, science, and religion.7 

In this perspective, the fact that extensive courses in axiomatic geometry 
were part of lower secondary education during the period 1905-1962 might 
appear to be a relic of the past. It can also be seen as an evidence of rigidity 
when it comes to school mathematics. In the school regulations, in the cur-
ricula and in the public debates the goals had changed, but the content of the 
courses remained as it was. Indeed, mathematics instruction in Sweden dur-
ing the first half of the 20th century is often described in terms like “tradi-
tional,” “static,” and “isolated.”8  

The description of Swedish mathematics instruction as being traditional, 
static and isolated also stands out in comparison to how mathematics instruc-
tion in other Western countries is described. During the first decades of the 
20th century, mathematics instruction was discussed and reformed in coun-
tries such as Germany and England. Several of the issues then discussed 
were indeed related to geometry instruction. For instance: What was the 
value of the axiomatic method in geometry instruction? What was its value 
in relation to education in general? Was it possible to adjust geometry in-
struction to the students’ spatial intuition? Could geometry instruction de-
velop spatial intuition? How could experimental teaching methods be inte-
grated in geometry instruction? Moreover, the international exchange of 
ideas in the field of mathematics instruction increased when international 
journals and conferences devoted to mathematics instruction were organized 
for the first time at the beginning of the 20th century.9 Thus, in comparison to 
what we know about mathematics instruction in other western countries, the 
impression of rigidity in Swedish school mathematics is amplified. 

However, mathematics instruction in Sweden during the first half of the 
20th century has not yet been investigated systematically. In this dissertation, 
I take a fresh look at elementary10 geometry instruction in Sweden during the 

                               
7 For further details, see the chapter regarding literature on the history of Swedish mathemat-
ics instruction or the background chapters. 
8 See for instance Magne (1986), Håstad (1978) and Unenge (1999). Their standpoints are 
described in the chapter about literature on the history of Swedish mathematics instruction.   
9 These reforms are described in the background chapter below. 
10 By elementary, I mean the lower secondary schools as well as the elementary schools, i.e. 
Realskolan and Folkskolan. 
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period 1905-1962, a school subject and a period that in fact may not have 
been as traditional, static and isolated as previously believed. 

Research plan  
Purpose and questions 
The purpose of this dissertation is to investigate textbooks and other litera-
ture that was used by teachers in elementary and lower secondary schools in 
connection to geometry instruction. In particular, I investigate and describe 
professional debates about elementary geometry instruction. During my in-
vestigations, I have set out to answer two main questions: 

1) What arguments regarding content, goals, and methodologies occurred 
in the more comprehensive essays and articles on geometry instruction? 

2) What was the significance of these arguments? This question is divided 
into two questions. 

a) What was the meaning of the concepts used in the argumentation on 
geometry instruction? Or more specifically, what objects or phenomena did 
the persons mean by the crucial words and expression used in the argumen-
tation.  

b) What was the relevance of the arguments regarding geometry instruc-
tion? More specifically, to what extent did arguments on geometry instruc-
tion concern the practice of professionals, i.e. teachers, but also textbook 
authors and test constructors? 

Scope of the dissertation – subject and time period 
My motive for restricting my study to geometry instruction and the period 
1905-1962 is that this particular school subject was discussed in several 
Western countries during the period. Moreover, geometry filled a great part 
of the curricula in mathematics in Sweden and other Western countries dur-
ing this period.11 

My motive for restricting my study to the period 1905-1962 is linked also 
to the changes of Swedish primary and secondary education that took place 
during the period. Apart from the establishment of Realskolan in 1905 and 
the growing importance of Realistic education at secondary level, four other 
sequences of changes stand out in particular:12 

� the expansion of the number of students at secondary level 
� the integration of primary and secondary education 
� women’s access to higher education 

                               
11 See the background chapter for further details. 
12 These aspects of the Swedish school system are described in the background chapter below. 
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� the secularization13 of the school system 
All these changes concern the selection of students and the content of the 
courses, i.e. basic features of a school system.      
The reason to put 1962 as an endpoint is that axiomatic geometry disap-
peared from the Swedish course plans in connection with the introduction of 
Grundskolan in 1962. Grundskolan is the general compulsory school that 
replaced the previous school types, i.e. the elementary schools, the lower 
secondary schools and the girl schools.14 The choice to put this year as the 
endpoint for my study is also linked to the major reformation on school 
mathematics that took place in Sweden and other countries during the 
1960’s.15 

Sources and selection – the professional literature 
In many ways, school regulations, course plans, textbooks, teacher journals, 
teaching literature, and official school reports constitute the natural sources 
for a study on the history of mathematics instruction. Perhaps the most basic 
reason for this is that these texts are the remains of mathematics instruction 
of past times. However, to choose from this set of sources and to investigate 
them is not as straightforward. I would say that these sources represent a 
rather chaotic collection of voices about what school mathematics was sup-
posed to be; authors with different backgrounds and aims, such as school 
officials, mathematicians, researchers in education, textbook authors, ordi-
nary teachers (not so often though), politicians, industrialists, intellectuals, 
etc, express their ideas about how things ought to be arranged. Here, I also 
include the textbooks as the voice of its author. As I see it, a textbook pri-
marily expresses the standpoints of its author and should, besides that, be 
considered a recommendation regarding what the teachers should teach; 
textbooks do not reveal what parts the teachers chose to teach and how they 
taught. Textbooks can be quite deceptive in that way. 

Having this situation in mind, I think it is important to decide who have 
been the readers and the users of the sources that you investigate. In order to 
distinguish these readers and users, I have considered the school system as a 
set of different groups of expertise. Examples of such groups are school poli-
ticians at the national or municipal level, officials with the central school 
authorities, researchers in education, or teachers in different subjects and 
school forms. Primarily, I separate these groups by their working tasks and 
their methods to solve these tasks; I think of these tasks and methods as the 
basic components that join the members of groups of expertise. 
                               
13 I am here referring to the decreasing administrative responsibilities of the church as well as 
the changing contents and goals of the courses in Christianity, later on religion. 
14 See the background chapter for a brief description of the Swedish school system of that 
time. 
15 See the background chapter for further details. 
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On the basis of this distinguishing of groups of expertise, I am interested 
in texts that experts have used as they practice their expert skills, especially 
the texts that describe the main tasks and methods. 

The group that I focus on in this thesis comprises persons whose profes-
sion was to communicate mathematics in the elementary schools and the 
lower secondary schools – they are the experts, the readers, and the users I 
am interested in. By professionals in this case, I intend not only teachers, but 
also textbook authors and test constructors. Consequently, the main sources 
of this thesis are texts that have been written for and used by professionals in 
connection with elementary geometry instruction. I denote these texts the 
professional literature on elementary geometry instruction. In practice, my 
main sources are course plans, textbooks, final exams, and articles and es-
says with a special interest in mathematics instruction.16 

This group of professionals and the texts they read and used in connection 
to their profession are relevant if we want to understand the production and 
reproduction of school mathematics, but also in what respect these processes 
have changed. In the end, the schools are the essential part of the educational 
system where education is going on, and it is the work of teachers, textbook 
authors and test constructors that upholds this practice.17 

The professional debate 
One part of my investigations have been to describe a professional debate on 
elementary geometry instruction; a debate where the main problems and 
methods of a professional practice were defined and motivated. Of course, 
we cannot consider a debate like this an imprint of teachers’ thoughts and 
views in general. On the other hand, this does not entail that an investigation 
of such a debate reveals nothing more than the views of the debaters. My 
position in this matter is to regard the professional debate as a source of po-
tential arguments and an incentive for actions, arguments that may be used 
by the common teacher to convince her fellow colleagues about some issue. 
By this, I do not mean that one had to comply with certain directives or ar-
guments. You could, of course, also criticize, reject, or disregard the whole 
set of directives and arguments, or parts of it. But, even though you ignore 
the debate, other professionals may have put you in relation to it.   

The main items of my investigations in this respect have been a number 
of articles and essays in journals and treatises specialized in mathematics 

                               
16 The sources are accounted for in chapter N. 
17 The method to focus on groups that on a professional basis spread or use scientific knowl-
edge is described by for instance Widmalm (1999). The research object that he then refers to 
is the interplay between technology, industry, politics, and science during the 20th century. 
[Widmalm (1999), p. 13] He also accentuates the need to investigate not only the discovery of 
scientific knowledge, but also how it was applied and adapted to the needs of everyday life. 
[Widmalm (1999), pp. 18-20] 



 15

instruction.18 These texts were first and foremost intended for the working 
teachers and concerned their professional practice either in the elementary 
schools or in the lower secondary schools. Thus, it was not a public debate, 
but a debate where professionals turn to other professionals of the same 
practice, although more general issues on education and society were men-
tioned.  

In comparison to other texts where mathematics instruction was treated, 
for instance curricula, textbook reviews, or contributions to public debates 
on education, these articles and essays are more exhaustive when it comes to 
geometry instruction. By ‘more exhaustive’, I mean that crucial concepts and 
expressions, as for instance visualizability or training in reasoning, were not 
used only as catchwords, but explained more fully.  

The authors of these texts occupied central positions in the group of pro-
fessionals engaged in mathematics instruction. Among these authors we find 
two teacher educators, two leading school officials, one constructor of cur-
ricula, one constructor of finals exams, several editors of teachers’ journals, 
several textbooks authors, and authors of books on teaching methods used in 
teacher training. Some of them filled two, three and even four of these roles. 
Apart from that, all of them worked or had worked as mathematics teachers. 
However, we should not consider them as regular teachers. They rather con-
stituted an elite group who set the agenda for the professional debate on 
mathematics instruction.  

During the investigation of the articles and essays, I have focused on three 
types of directives and arguments regarding elementary geometry instruc-
tion, which I denote content, goal, and methodology. These categories corre-
spond to the basic didactical questions: what? why? and how?  

By content, I mean directives and arguments concerning the elements that 
should be included in the geometry courses, e.g. mathematical concepts, 
theorems, formulas, other propositions, algorithms, methods, applications, 
etc. In this perspective, a textbook constitute a directive, or a recommenda-
tion, regarding what the teachers are supposed to teach.  

The goals are directives or arguments regarding what geometry instruc-
tion is supposed to achieve. By goals, I do not only intend that the students 
are supposed to master geometry, but also other types of goals, for instance:19 

� Moral goals – Students are usually subjects of some kind of moral 
schooling, for instance good manners, piety, patriotism, equality 
between the sexes, environmental awareness, economic awareness, 
democracy, critical thinking, etc. 

� Epistemological goals – These goals are related to conceptions of 
what it means to know and learn something. One example is the 

                               
18 I describe these articles and essays in the beginning of Part C. 
19 These categories have occurred to me as I have worked through the source material, and the 
names are my own. In this dissertation, they serve as an example of different types of goals.  
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current Swedish syllabus, where the concepts facts, skills, under-
standing and belief are used in discussions on knowledge and what 
the students are supposed to learn. 

� Functional goals – These goals are related to conceptions of how 
the students are supposed to use their knowledge, for instance in 
further education or to solve tasks in every day life. In this cate-
gory, I also include directives or arguments regarding for which 
groups of students the education is intended. 

A methodology is a set of arguments regarding how and why the geometry 
courses are supposed to be communicated to the students in order to achieve 
the goals. Hence, by a methodology, I do not merely intend teaching meth-
ods to be applied in the classroom. This category include arguments regard-
ing why and how and concepts shall be explained and defined; how theo-
rems should be introduced, explained or proved; how exercises should be 
designed; how tests should be designed; how textbooks should be designed; 
which symbols ought to be used, etc. 

However, there are some aspects of the source material and the concept of 
professional debate that need to be clarified. If we understand a professional 
debate as an incentive for actions and a source of potential arguments, I 
think it is relevant to ask about the significance of the arguments. What did 
the arguments mean to the professionals, and what was their relevance? 

The significance of a professional debate 
A critical aspect of the sources investigated is that they mainly constitute 
ideals regarding mathematics instruction; they contain directives and argu-
ments about how things ought to be arranged. At this point, I am referring 
not only the articles and essays of the elite, but also curricula, textbooks, 
other articles and tests in general. Thus, when making an investigation of 
professional literature on mathematics instruction you run the risk of de-
scribing what the professionals may have talked about or which textbooks 
they may have used.  

My point is that these sources do not reveal the significance of the direc-
tives and arguments. Here, I distinguish between meaning and relevance. 

In curricula, textbooks, articles, teaching literature, etc., the authors did 
not very often elaborate upon how they, or others, understood concepts and 
propositions, i.e. they did not reveal a more precise meaning of the concepts 
and propositions. This is by no means surprising since that was not their 
prime motivation for writing this type of text, and the discussions were kept 
at a general level. This has been my reason to focus the investigations on 
more exhaustive treatises. But neither have the authors of these texts expli-
cated their full understanding of concepts and arguments.  

The other aspect is that the source material does not provide explicit in-
formation about the relevance of directives and arguments; i.e. in what re-
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spect did certain directives and arguments concern the practice of teachers, 
textbook authors, and test constructors. The directives and arguments were 
perhaps more of a facade. 

Niss (2001) discusses a similar issue in an article about the goals of 
mathematics instruction. 

Even if official or semi-official goals are in fact established in explicit terms 
in accessible documents, it is far from certain that these goals are the real 
ones, those that underpin mathematics education and guide teaching and 
learning. Oftentimes goals are formulated ‘post festum’ in order to embellish 
the curriculum or the syllabus expositions, or to provide a persuasive pream-
ble to politicians, administrators, employers, parents, colleagues in other sub-
jects, or to be a memorandum to the teachers who are to implement the cur-
riculum. Moreover, it frequently happens in periods of curriculum reform that 
the explicit goals are changed while the curriculum remains largely un-
changed. Or the converse, for that matter, that the curriculum is changed 
while the official goals remain the same.20 

As an illustration of this problem, we can consider a textbook in mathemat-
ics intended for the elementary schools, i.e. Folkskolan, printed in 1931. In 
the foreword, the authors declare quite briefly that explanations and exer-
cises are based on åskådlighet, a noun often translated as spatial intuition. 
However, another translation is visualizability, a translation based on the 
verb skåda, which means to see or to watch. 

In the current curriculum, it was also established that mathematics in-
struction should follow a principle regarding åskådlighet. 

1. Visualizability [~åskådlighet] should as far as possible be aimed at during 
[mathematics] teaching. Measuring and weighing should for instance be con-
sidered the foundation for the calculation of measures and weights, and the 
operations of calculation should, when possible, be made visual [åskådlig-
göras] by counting objects.21 

This recommendation reveals a bit more. It indicates that åskådlighet means 
to make something visual by referring to the students’ experiences (measur-
ing and weighing) or some real objects. From this, we might infer that illus-
trations were used frequently in the textbooks.  

However, in comparison to any modern textbook intended for the grades 
4 to 6, the illustrations are quite few.22 Take for instance the introduction of 
percentage in grade six; this was done without any illustrations what so 
                               
20 Niss (1996), pp. 17-18. For a Swedish version of the article see Niss (2001). The quote is 
located on pp. 58-59 in Niss (2001). 
21 Kungl. Skolöverstyrelsen (1919), p. 67: ”1. Vid undervisningen bör så långt som möjligt 
åskådlighet eftersträvas. Så t. ex. böra mätningar och vägningar läggas till grund för räkning-
en med mått- och viktsorter, och räkneoperationerna böra, då så lämpligen kan ske, åskådlig-
göras genom räkning med föremål.” [The italics are in the original curriculum.]  
22 Asperén et al (1931), p. 3 
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ever.23 In the chapters on geometry, the number of illustrations was greater. 
Yet, the illustrations were mainly used as parts of ostensive definitions of 
concepts – this is a rectangle – or when constructions were described, e.g. 
the bisection of angels or the generation of perpendiculars.24 My point is that 
the authors could not have used fewer illustrations unless they had skipped 
all types of illustrations. On only a few occasions were the illustrations used 
to explain the meaning of a proposition in a different manner. For example, 
in connection with the proposition, a straight line is the shortest distance 
between two points, the students were supposed to measure the lengths of a 
straight line and a crooked line that shared the same endpoints; these lines 
were also depicted in the book. The purpose of the picture and the measuring 
task seems to have been to provide a deeper understanding of the proposi-
tion.25 

Thus, the significance of the formulations about åskådlighet is not obvi-
ous. Did they have any relevance? Was it just lip service paid by the authors 
or did they take this idea seriously? Nor is it obvious what the concept åskå-
dlighet meant to the authors. Perhaps åskådlighet was important to them, but 
it did not mean that textbooks had to be crammed with illustrations. 

Nevertheless, I do find it possible to investigate the significance of direc-
tives and arguments, at least to some extent. An important part of my ap-
proach to this problem has been to consider the mathematics in textbooks 
and final exams in the light of directives and arguments about geometry in-
struction. At first glance, the textbooks appear very much the same; defini-
tions, theorems, formulas, proofs, explanations, exercises and illustrations 
are quite similar, if not identical. Each year, the exercises on the final exams 
look pretty much the same. Still, upon closer inspection you notice varia-
tions. If we compare these variations with the arguments in curricula, arti-
cles, and methodological literature, it is clear that these variations are not 
accidental.  

Thus, by comparing directives and arguments about content, goals and 
methodology with textbooks and final exams, we receive a good picture of 
how textbook authors and test constructors acted relation to these directives 
and arguments. Moreover, we get a picture of how the textbook authors and 
the test constructors understood these directives and arguments. Since cur-
ricula, journals, teaching literature, textbooks, and final exams were intended 
for persons that took part in the same professional discussions; this compari-
son gives an indication of how teachers conceived of geometry instruction. 
More specifically, we get a picture of what the teachers talked about, albeit 
not their standpoints in these issues.  

                               
23 Asperén et al (1931), pp. 68-76  
24 Asperén et al (1931), pp. 50-68. 
25 Asperén et al (1931), pp. 50. 
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In order to achieve a better estimation of the relevance of directives and 
arguments among the teachers, I have gathered statistics on the textbooks 
that were available. The choice of textbooks also gives an indication about 
the teachers’ reception of the arguments about geometry instruction. For 
example, the choice between textbooks that followed Euclid’s Elements very 
closely and textbooks that deviated from the Elements quite distinctly pro-
vides a rough approximation of the teachers’ standpoints in the discussions 
on textbooks. 

A source that exposes what the teachers were doing is the national final 
exams; they provide a good indication of what kind of exercises the teachers 
and the students grappled with, since we know that the students took the 
tests and that the teachers corrected them. Most likely, such exercises were 
treated by a majority of the teachers during lessons as well. Other types of 
exercises may of course have been treated, but I have not made any attempts 
to investigate the occurrence of such exercises. Principally, because it is too 
difficult to determine which other types of exercises were used. The text-
books did contain only definitions, axioms, and theorems, but there were 
booklets containing supplemental exercises. On the other hand, it is difficult 
to determine which exercises the teachers chose to work with during lessons 
and how they used them. 

In my investigations, the national final examinations constitute a bench-
mark for the contemporary directives and arguments regarding the goals of 
geometry instruction. For example, training in reasoning was a central issue 
in several articles, but the discussions were kept on a general level. Instead, 
the final exams give an idea of what this training included. The results at the 
national final exams also give an indication as to whether or not the teachers 
succeeded in their teaching and in attaining the goals. An interesting source 
in this respect is the annual evaluation reports about the final exams where 
also the teachers’ corrections of the final exams were commented on and 
evaluated. Another source related to the final exams is the actual student 
papers. These sources related to the final exam have been investigated as 
well. 

Regarding the investigation of arguments and directives, my point of de-
parture has been to describe the professionals’ explicit statements on geome-
try instruction. The statements have been taken at face value, and I have not 
been trying to reveal some hidden agenda or underlying policy during my 
search for arguments and directives. The significance of the arguments and 
directives has been investigated in textbooks and final exams. 

The value of an approach where you consider the significance of certain 
concepts, arguments, or theories and not just concepts, arguments, and theo-
ries per se has been emphasized by, for instance, Widmalm (1999);26 he re-
fers to studies on the history of learning and education in Sweden. Schubring 
                               
26 Widmalm (1999), p. 11 
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(1989) underscores the value of this kind of approach in investigations of the 
history of mathematics and the history of mathematics instruction.27 His 
work on the mathematics teacher profession in Prussia during the period 
1810-1870, Schubring (1991), is very much in line with this intention. 

Outline of the dissertation 
Besides this part of the dissertation (Part A) the dissertation is divided into 
six more parts: B, C, D, E, F and G  

Part B contains two background chapters. In the first chapter, I describe 
some basic features of the Swedish school system during the period 1905-
1962. In the second chapter, I describe the history of geometry instruction in 
Western countries, mainly in Prussia/Germany and England.  

In Part C, I address a number of exhaustive articles and essays on elemen-
tary geometry instruction. In this part, I also describe the passages of the 
curricula that concerned geometry instruction. This description also includes 
the time plans. The main purpose of this part is to answer the first question: 
What directives and arguments regarding content, goals, and methodologies 
occurred in the more exhaustive essays and articles on geometry instruction 
during the period 1905-1962? Part C ends with a chapter where I summarize 
the main directives and arguments about elementary geometry instruction. 
Here, I also foreshadow some answers to the second question about the sig-
nificance of the arguments.   

In Part D and E, I treat the most common textbooks used at the common 
and lower secondary schools, i.e. Folkskolan and Realskolan, during the 
period 1905-1962. In Part F, I treat the final exams in mathematics for Real-
skolan together with correction forms and the reports on how the students as 
well as the teachers had performed on the tests. The main purpose of Parts 
D, E and F is to answer the second question: What was the significance of 
the arguments on geometry instruction?  

Part G constitutes an epilogue. Here, I summarize my main results and re-
late them to previous literature where mathematics instruction in Sweden 
and other countries is treated.  

Literature on the history of Swedish mathematics 
instruction 
To my knowledge, there are very few treatises on the history of Swedish 
mathematics instruction. If we consider more extensive treatises that are 

                               
27 Schburing (1989), p. 171 
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based on primary sources28 and that were authored during the last 100 years, 
I can think of only one: Hatami (2007). In this thesis, The Rule of Three in 
Swedish textbooks during the period 1600-1960 is investigated. To be more 
exact, he considers The Rule of Three as a manifestation of rhetorical 
mathematics;29 in this perspective he discusses how The Rule of Three has 
been introduced and explained in textbooks. I return to this treatise below.  

However, despite the small number of treatises, there is indeed an interest 
in the subject. If we consider Swedish didactic or pedagogical treatises on 
mathematics education, brief historical backgrounds are sometimes included 
in these works.30 

A common feature of these backgrounds is that they pay considerable at-
tention to the great school reforms of the 1960’s, i.e. the introduction of 
Grundskolan and the New Gymnasium (the new school type for upper sec-
ondary school). In these backgrounds, the authors point out that these re-
forms were accompanied by radical changes in mathematics instruction, e.g. 
the abandonment of classical Euclidean geometry, new teaching methods, 
and later on the introduction of the New Math. They also point out that these 
reforms were accompanied by major programs for in service education of 
mathematics teachers. 

Another common feature of these historical backgrounds is that they con-
tain explanations of why mathematics instruction was reformed during the 
1950’s and the 60’s. Three types of reformist arguments regarding mathe-
matics are put forward. 

� School mathematics was considered old-fashioned from a scientific 
point of view. Therefore, the courses were changed.31 

� School mathematics was considered old fashioned in relation to the 
needs of a modern society. These needs could be in science or 
technology, but also so-called everyday situations. Therefore, in 
order to provide knowledge more suitable for such areas, the 
courses in mathematics were changed.32 

                               
28 By primary sources in this case I intend texts that were used in connection to mathematics 
instruction, e.g. course plans, textbooks and teaching literature. 
29 Hatami (2007), p. 8. Retorical mathematics is defined in the following way by Hatami 
(2007): ”In rhetorical mathematics, mathematical problems are solved by means of ordinary 
language. By stepwise reasoning, instead of a ready made algorithm or a mathematical model,   
the solution is reached. A mathematical model can be an equation that is solved by means of 
certain rules.” [Hatami (2007), p. 14]]  
30 See for instance Håstad (1978), Kristiansson (1979), Hellström (1985), Magne (1986), 
Hedrén (1990), Löthman (1992), Hellquist (2000), Bjerneby Häll (2002), Samuelsson (2003) 
and Nilsson (2005) 
31 Hellström (1985), p. 12; Hellquist (2000), p. 225, Kristiansson (1979), p. 2; Nilsson (2005), 
pp. 29-34 
32 Kristiansson (1979), p. 1; Nilsson (2005), pp. 37, 41-43, Samuelsson (2003), pp. 40-41; 
Håstad (1978), pp. 114, 117; Hedrén (1990), p. 23; Löthman (1992),  p. 39 
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� Pedagogical and psychological research had brought a new aware-
ness about mathematics instruction and learning, which resulted in 
a reformation of the courses and new teaching methods.33 

By putting forward these arguments as a source of change, the authors of the 
historical backgrounds links the changes in school mathematics to changes 
in society and science. This relation is underscored with even greater empha-
sis by the Swedish pedagogue Sellander (2001) in an essay on Swedish 
school mathematics of the 18th century: 

For centuries school mathematics has evolved from a formal education and a 
deductive method to today’s functional orientation with elements of an induc-
tive method. Early on, one considered mathematics, along with Latin, impor-
tant for the students’ ability to think and make judgments, and mathematics 
provided useful training in systematic working procedures and clarity of 
thought. … During the 18th century, a long mathematical tradition based on 
Euclid’s geometry was complemented by arithmetic; thereby, mathematics 
was more adapted to the new needs of the era that followed upon the expan-
sion of shipping and trade. … During the late 19th century, with the break-
through of industrialism and the formation of modern schools, with industrial 
chemistry and new sources of energy, with railroads and national time stan-
dards, with the organization of labor and capital and the formation of the 
modern national state, school mathematics was renewed once again, as the 
practical relevance of school mathematics was accentuated even more.34 

However, the historical backgrounds and Sellander’s essay leaves a couple 
questions. Why did the great changes of mathematics instruction in Sweden 
take place only in the 1950’s and 60’s? Why did courses in axiomatic ge-
ometry, courses that contained few applications, remain a part of the curric-
ula of Realskolan? I mean, the breakthrough of industrialism that Sellander 
describes took place in the late 19th century. 

However, in comparison with the concern about the 1950’s and 60’s, the 
half century before 1950 is treated very briefly in the historical backgrounds, 
most times not at all. In cases where mathematics instruction of this period is 
given a slightly longer treatment, it is often described in terms of its tradi-

                               
33 Hellström (1985), pp. 11-12; Kristiansson (1979), pp. 3-4; Nilsson (2005), pp. 29, 32; 
Samuelsson (2003), pp. 35-36 
34 Sellander (2001), pp. 41-42: “Matematiken i skolan har under århundraden utvecklats från 
ett formalbildande och deduktivt arbetssätt till dagens funktionella inriktning med inslag av 
induktiva arbetssätt. Tidigt ansåg man att matematik, vid sidan om latinet, hade betydelse för 
elevernas tankeförmåga och omdöme, och att matematik var nyttig träning för att man skulle 
lära sig ett systematiskt arbetssätt och tankeklarhet. ... En lång matematisk tradition baserad 
på Euklides geometri kompleterades under 1700-talet med aritmetiken, och matematiken blev 
därmed mer anpassad till den tidens nya behov som följde med den växande sjöfarten och 
handeln. ... Under 1800-talets slut, med industrialismens genombrott och den moderna sko-
lans formande, med kemiindustri och nya energikällor, med tågtrafik och nationellt enhetliga 
tider, med organisering av arbete och kapital och formandet av den moderna nationalstaten 
skedde åter en förnyelse av skolmatematiken, då matematikens praktiska relevans betonades 
än mer.” My translation. 
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tionalism, isolation, and stagnation. In a report on theories on common edu-
cation and mathematics instruction in Sweden, Magne (1986) claims that 
mathematics instruction at the common level was completely unaffected by 
the reform movements in other Western countries before 1950.35 However, 
he does suggest that mathematics instruction at the secondary level was in-
fluenced by international movements.36 Nonetheless, in the same report, 
Magne points out that the international debates on geometry instruction 
around 1900 never reached Sweden, nor did the international debates on 
algebra instruction during the 1920’s.37  

In his doctoral thesis in mathematics education, Håstad (1978) takes it 
even further:  

If we must mention the force that has played the leading role in the develop-
ment of mathematics instruction, the answer is simple: tradition. However, 
there are a number of other “persons in power” that have possessed important 
supporting roles. The study of their influence is crucial. And how important 
is tradition? In order to come to grip with its role [the role of tradition], I 
make the following simplification. The mathematics instruction that took 
place up to the 1950’s should be considered tradition. The plausibility of such 
an assumption is compellingly vindicated by the fact that mathematics in-
struction has been relatively static during a long period of time and that only 
minor modifications have taken place during the previous decades.38 

In an essay on school mathematics, Unenge (1999) summarizes his experi-
ences of Swedish mathematics instruction before 1960 in a similar way. 

Well until the late 1950’s, mathematics instruction was more or less un-
changed. The way I was taught as a student in Realskolan was the way I 
taught my students in Realskolan 15 years later.39 

Unenge began working as a teacher in 1952. 
These descriptions regarding the 1950’s and 60’s are by no means wrong, 

as long as we are conscious about what aspects of the situation they describe. 
I have no doubts about the descriptions of the reformist arguments and the 
changes in the curricula; undeniably, these arguments were a part of the de-
bate and the changes in the curriculum did take place. The problematic as-
pect is that only the arguments of the ‘winning team’ are mentioned – the 
arguments of those whose wishes came true in the reforms of the 1960’s. 
The critics of the reforms and their counter arguments are not considered at 
all. In fact, from the historical backgrounds you cannot tell whether there 
were any critics. It is almost as if the changes that took place followed some 
                               
35 Magne (1986), p. 6 
36 Magne (1986), p. 6 
37 Magne (1986), p. 11 
38 Håstad (1978), p. 134. The underlining as well as quotation marks are original. 
39 Unenge (1999), pp. 24-25 
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kind of order related to the industrialization of Swedish society. Another 
problematic aspect is the brief descriptions of the decades before 1950 as 
being traditional and static. These depictions also appear to be the view of 
the ‘winning team’ and linked to the arguments about mathematics instruc-
tion being old-fashioned. 

An interesting aspect of Magne’s, Håstad’s, and Unenge’s descriptions of 
Swedish mathematics instruction prior to 1950 is their relation to research 
about the history of the Swedish school system. Their claims about tradition-
alism, isolation, and stagnation do not tally in any obvious way with a recent 
study on the debates regarding curricula in science and mathematics during 
the period 1905-1962. Lövheim (2006) characterizes the secondary teachers 
in science that took part in this debate as a progressive group, a group that 
longed not only for changes of the curricula, but also more general changes 
of education and society. He even describes them as the “undergrowth of the 
new enlightenment” working anonymously behind leading politicians and 
intellectuals.40 

Did this group of progressive teachers really ignore the international de-
bate on how to change mathematics instruction? Did none of these persons 
make any attempts to change mathematics instruction? Why did axiomatic 
geometry remain part of the mathematics courses in Realskolan? After all, 
mathematics was one of the major school subjects and science and technol-
ogy contained a lot of mathematical applications. If the claims of Magne, 
Håstad, and Unenge are right, they provide an important perspective on 
Lövheim’s results; in the public debate on education and society the teachers 
in science were progressive, but they were not willing to rethink their views 
on either the content of the courses in mathematics or the ways to communi-
cate the content.    

Actually, we do know about attempts to change mathematics instruction 
in Sweden during the 20’s and 30’s.41 However, investigations of these at-
tempts are quite brief, with one merely pointing out that some educators 
argued that mathematics instruction ought to change. What these attempts 
consisted in or in what respect they had any influence has not been investi-
gated. 

In this context, I want to return to the thesis of Hatami (2007). He shows 
that the treatment of The Rule of Three in the textbooks did change. Of in-
terest for this thesis, different approaches to the subject were present during 
the 19th and 20th centuries.42 This is a result that disagrees with the claims 
about traditionalism and stagnation before 1950.   

                               
40 Lövheim (2006), pp. 88-89.  
41 See for instance Johansson & Wistedt (1991a), Johansson & Wistedt (1991b), Kilpatrick & 
Johansson (1994), Nilsson (2005) and Magne (1986). However, Magne (1986) describes the 
impact of these attempts as limited.   
42 Hatami (2007), pp. 185-198. 
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Hatami (2007) also discusses the changes of school mathematics in the 
1960’s. He argues that the treatment of the The Rule of Three in a rhetorical 
manner included a dimension of elementary mathematics that is quite rare 
today. According to Hatami (2007), the rhetorical side of basic arithmetic 
with fractions has been neglected since the 1960’s when The Rule of Three 
disappeared from course plans.43  

As I see it, such observations about missing components in today’s school 
mathematics are hard to make if you do not know what to look for. Hope-
fully, a thesis like the present one, addressing mathematics instruction of 
past times, will provide some perspective on present-day discussions on 
mathematics instruction. This might be at the research level, at the political 
level, in teachers’ training, or among teachers. In this respect, the historical 
backgrounds discussed in this chapter are particularly interesting since they 
reflect how some researchers in mathematics education consider their re-
search object. Considering the fact that only the reformist arguments of the 
1950’s and 60’s have been documented, these historical backgrounds might 
give us reason to be a bit critical about how we normally conceive and pose 
research questions about mathematics instruction.  

                               
43 Hatami (2007), pp. 17-18, 199-203 
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Part B – Historical background 

Introduction 
This historical background contains two chapters. 

In the first chapter, I put forward changes in the Swedish schools system 
during the period 1905-1962. In particular, I describe the position of Realis-
tic education within the school system, the integration of primary and secon-
dary education, girls’ access to secondary education, and the increasing 
number of students at the secondary level. In order to get some perspective, 
the preceding century is treated as well.   

In the second chapter, I describe influential movements and arguments 
regarding mathematics instruction in some Western countries during the 
period 1905-1962. Most emphasis is put on geometry instruction and the 
situation in Prussia/Germany and England. The reason for this restriction is 
the close cultural bonds between Sweden and the German-speaking countries 
during the 19th and early 20th centuries.44 At the same time, English reform-
ists did also provide arguments to the Swedish school debate during the late 
19th century.45 In this chapter as well, I include the preceding century in order 
to bring some perspective. 

The backdrop for these changes in the school system is of course the 
transformation from an agricultural society to an industrial society and the 
demands for democracy, extended and equal civil rights, and religious, po-
litical, and economic freedom. 

Throughout this dissertation, I use the notions Humanistic and Realistic 
education. These notions are taken from a work of the French sociologist 
Durkheim on the history of educational thought from the Middle Ages to the 
early 20th century. Here he identifies two fundamental theories regarding 
what a curriculum for secondary schools ought to comprise: he denotes them 
the educational theories of the Humanists and the Realists.46 I understand the 
notions Humanistic and Realistic educations in the following way. The ulti-
mate purpose of a typical Humanistic education is to convey knowledge 
about man and his reasoning, morals, religion, and culture. Such a curricu-
lum is dominated by languages, rhetoric, logic, dialectic, literature, and art. 
The ultimate purpose of a typical Realistic education, on the other hand, is to 
                               
44 See for instance Richardson (1963), p. 131 
45 See for instance Richardson (1963), pp. 148-156  
46 Durkheim (1977), pp. 265-291.  
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convey knowledge about nature and things; such a curriculum is dominated 
by the sciences, but also engineering and economics. 

Changes in the Swedish educational system 
Humanistic and Realistic educations in Sweden 
At the beginning of 19th century, the secondary schools in Sweden, i.e. Läro-
verken, comprised two course programs: one Humanistic and one Realistic 
program. The Humanistic program was conveyed at the Grammar schools 
(grades 3-8) and later on at the Gymnasiums (grades 9-12); the Realistic 
program was conveyed at the so-called Apologists schools (grades 3-8). The 
functions of these programs were quite different, as the Humanistic program 
should prepare the students for further studies at the state universities. The 
Realistic program, on the other hand, did not provide access to the state uni-
versities; it should prepare the students for more advanced vocational studies 
or more advanced tasks in working life.47  

Throughout the 19th century, critics argued that Humanistic education was 
too dominant in the secondary schools. In particular, the value of the exten-
sive courses in Latin and Greek was questioned; courses that were required 
for further studies at the state universities. One demand was that a Realistic 
program at Läroverken, with few lessons in classical languages or none at 
all, should provide entrance to the state universities. Moreover, some critics 
wanted a better and longer Realistic program with more advanced courses in 
mathematics and science along with modern languages. This should provide 
a better preparation for qualified vocational educations in engineering, agri-
culture, trade, navigation, pharmacy and military matters.48 During the last 
decades of the 19th century, the critics were inspired by works by John Stuart 
Mill, Herbert Spencer, Thomas Huxley and Alexander Bain, a group of Eng-
lish philosophers that advocated Realistic school programs. This type of 

                               
47 Sjöstrand (1965), pp. 312-319: According to the school regulations of 1820, Läroverken 
comprised three programs: Apologists schools (year 3-8), Grammar schools (year 3-8) and 
Gymnasiums (year 9-12). The Apologists schools conveyed a general civic education that 
comprised the subjects Swedish, mathematics, German, French, history, law, politics, geogra-
phy, natural history and Christianity. There were no courses in classical languages. Studies at 
the Apologists schools did not lead to higher education at university. The way up to university 
comprised studies at Grammar school and Gymnasium. Apart from a general civic education, 
these schools were to provide an education needed for the cultivation of scientific knowledge 
and state offices. The education at the Grammar schools did include similar subjects as the 
ones at the Apologists schools; however, the dominating courses were classical languages and 
mathematics. The first Latin course began in grade 3 and the first Greek course began in grade 
4. The education at the Gymnasium was a bit more diversified and included more courses in 
modern languages, physics, natural history, botany, music and gymnastics.  
48 Sjöstrand (1965), pp. 221-240. 
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education was supposed to provide more useful practical knowledge for 
every day life as well as working life.49 

A basic argument against extending Realistic education at secondary and 
university levels was linked to a conception where the state cared for the 
needs of the state; according to this view, the prime task of the secondary 
schools and the state universities was to educate officials for the state ad-
ministration, the state universities, and the church. The Realistic programs, 
which were believed to benefit private and commercial interests in the first 
hand, should not be a concern of the state.50 Historians also point at moral 
policies as a source for arguments against Realistic education; the advocates 
of a Humanistic education often mistrusted science and Realistic educations 
and put it in connection with a destructive materialism.51  

The leading argument for keeping Latin as a major subject in secondary 
education was that it provided training in logic and a formal and general 
knowledge about languages.52   

Gradually, the demands of the reformists gained influence. Still, the Real-
istic program did not provide eligibility to the universities until 1891. Before 
that, the basic academic degrees at the state universities, including degrees in 
science, required university courses in Latin. However, students in the Real-
istic program could enter technical universities and other advanced voca-
tional educations in agriculture, trade, navigation, pharmacy, and military 
matters. During the 19th century, several institutes for vocational education 
in these areas were being founded;53 institutes that later on turned into uni-

                               
49 Richardson (1963), pp. 148-156 
50 See for instance Florin & Johansson (1993), pp. 105-120 
51 See for instance Richardson (1963), pp. 80-84, 132 
52 See for instance Richardson (1963), pp. 122-131 
53 Sjöstrand (1965), pp. 193-198, 214, 237, 321-333: In the school reform of 1832, the Realis-
tic programs in some, but far from all, secondary schools were extended all the way up to the 
level of the Gymnasium. During the 1850’s, the Apologists schools and the Grammar schools 
were replaced by lower Elementary schools (grades 3-8) and the Gymnasiums constituted the 
upper Elementary schools (grades 9-12). Moreover, both the lower and upper schools con-
tained Humanistic and Realistic programs. During the first two grades of the lower schools, 
the students took the same courses. This meant that the first Latin course was postponed until 
grade 5. In 1869, grade 3 was dropped in the lower schools and in the 1870’s it was regulated 
that all students should take the same courses in grades 4 to 6. Thus, the Latin courses at the 
Classical program began in grade 7, whereas the students at the Real program took courses in 
English. The only foreign language in grades 4 to 6 was German. The school reform of 1878 
was however a small success for the reformists, since the Humanistic program was divided on 
the “classic” and the “half classic” program. Later on these programs were renamed the A and 
B programs. The A program retained great parts of the previous syllabus while Mathematics 
and English were added to the B program at the expense of Greek, which was dropped com-
pletely. Even though the Realistic program still did not lead to university by the reform of 
1878, the B program did. Moreover, both in the A and B programs, the students were sup-
posed to take more courses in  science. In 1894, the number of lessons in mathematics and 
science was increased in the B program even more, while the classical languages got fewer 
lessons. 
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versities specialized in technology, economics, and agriculture. These educa-
tions were not open to students in the Humanistic program.54 

The importance of Realistic education was accentuated by the new school 
regulation for the secondary schools launched in 1905. By this reform, Lär-
overken comprised the Realskola (lower secondary, grades 4-8[9]) and the 
Gymnasium (upper secondary, grades 9-12). The mere word ‘Real’ in Real-
skolan gives an indication of what the politicians had in mind. Realskolan 
contained no courses in classical languages. The most extensive subjects 
were mathematics, science, and modern languages. Moreover, Realskolan 
should prepare the students for vocational educations as well as further stud-
ies at the Gymnasium. Furthermore, there was no other program to choose 
from at lower secondary level. The Gymnasium, on the other hand, com-
prised three programs denoted Real, Classic and Half Classic.55  

Historians that have investigated the Swedish educational system of the 
late 19th and early 20th centuries, such as Richardson (1963) and Florin & 
Johansson (1993), describe the debate on educational reforms as a part of a 
battle between two cultures that culminated during the two last decades of 
the 19th century. On one side, there were different fractions of industrialists, 
scientists, radical intellectuals, liberals, and socialists who demanded differ-
ent types of societal changes. On the other side, there were conservative 
elites linked to the state administration, the church, and the state universities, 
who defended the current order. As I see it, Sjöstrand (1965) makes a similar 
description, but he does not stress the conflicts as much. He points out that 
people of the educated middle classes often took more moderate positions or 
none at all, accepting arguments from both sides.56 

Lövheim (2006) also emphasizes that the growing importance of Realistic 
education in the Swedish school system did not take place without resistance 
and fierce debates. In his study on debates that preceded the launch of new 
national curricula during the period 1905-1965, Lövheim (2006) identifies 
different types of arguments regarding Realistic education. According to its 
proponents, the improvement and expansion of Realistic education was 
linked to the modernisation of Swedish society and future possibilities. This 
view also included the notion of competition between countries and an ap-
parent risk of Sweden being left behind.57 During the first three decades of 
the 20th century, the belief in the possibilities of sciences and mathematics 
was influential. Especially school mathematics was considered important in 
this context and the content of the courses was closely linked to the training 
of engineers at the technical universities and other technical schools, but also 
to research and applications in chemistry and physics. However, the Human-
                               
54 Florin & Johansson (1993), p. 108 
55 SFS 1905:6 
56 Sjöstrand (1965), pp. 201-310; Richardson (1963), pp. 430-434; Florin & Johansson 
(1993), pp. 105-120 
57 Lövheim (2006), pp. 87-89 
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ists did not rest their case. In their argumentation, the negative effects of a 
school system too specialized in  sciences and mathematics were brought to 
the fore; by this kind of education, the coming generations’ contact with 
their cultural heritage together with their general education and character 
were at risk. Eventually, the Humanists were successful in the sense that 
mathematics and biology, the two dominating school subjects in Realskolan 
and the Realistic program in Gymnasiet, were drastically reduced by the 
school reform of 1933.58  

In the debate that preceded the great school reforms of the 1960’s, the is-
sue regarding Realistic versus Humanistic education was not as salient as 
before. The importance of science and technology for the well-being of soci-
ety was generally accepted. This time, the recruitment of future engineers 
and professionals in science was the basic issue for the authorities. Gener-
ously proportioned educations in these areas were supposed to secure the 
industrial production and economical growth. If we consider the number of 
students that entered a more advanced Realistic education at secondary level, 
the reforms did constitute an extension of Real education. On the other hand, 
the total number of lessons in mathematics and science at the Realistic pro-
gram was slightly reduced.59 

Lövheim (2006) stresses that secondary teachers in mathematics and sci-
ence played a crucial role in the process where Realistic education gained 
greater importance, both in the curricula and in the public debate. He de-
scribes them as the “undergrowth of a new enlightenment” working anony-
mously, but purposefully, behind leading politicians and intellectuals. 
Lövheim (2006) also suggests that these teachers did not just want to reform 
the school system, they also longed for a new outlook on society, science 
and religion.60 Richardson (1963) also mentions this movement of enlight-
enment and he characterizes it as radical; he summarizes its representatives’ 
outlook on life as “antireligious, utilitarian, rationalistic and directed towards 
science”; their outlook on society is described as “anti bureaucratic and anti 
patriarchal motivated in terms of natural law”.61 

Integration processes in the Swedish school system 
By 1880, elementary education in Sweden comprised two main types of 
schools: Folkskola and Läroverk, i.e. elementary schools and secondary 
schools. The municipal authorities administrated Folkskolan, while Lär-
overken were state schools or private schools. Moreover, the courses in 
Folkskolan did not formally constitute a preparation for later courses of Lär-

                               
58 Lövheim (2006), pp. 132-134 
59 Lövheim (2006), pp. 182-183 
60 Lövheim (2006), pp. 88-89.  
61 Richardson (1963), p. 432 
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overken.62 Apart from these school types, there were special schools for girls, 
the so-called Flickskolan. These schools were supposed to offer a female 
type of secondary education. A fourth type of education was home tutoring. 

The education at Läroverken by the turn of the 19th century was not only 
an education for a few; the conditions for the teaching were significantly 
better as well. The teachers at Läroverken had university education, often 
PhDs, while the teachers in Folkskolan had a three years of teacher training 
based on five years in Folkskolan. Läroverken also received greater financial 
means. In 1870, for example, the total budget for Läroverken exceeded the 
total budget for Folkskolan by a factor of three, even though the number of 
students in Folkskolan was 50 times greater. Moreover, the sanitary condi-
tions at the Folkskolan schools could be very poor.63  

During the 1880’s and 1890’s, this organisation of the school system was 
intensively criticized by liberals and socialists. It was not only unfair, the 
critics argued, it also caused hostility between the classes since the children 
of the wealthy and educated and the children of the workers were kept apart. 
It was believed that these tensions would be harmful for society in the long 
run. With the intention of avoiding such tensions, reformists propagated for 
one type of school for all children. Another reformist argument was that the 
quality of the education delivered in Folkskolan had to be improved in order 
to elevate the education of the lower classes.64 

During the late 19th century and the 20th century, several of the school re-
forms were influenced by these arguments. In stages, the Folkskolan was 
extended to seven years and at it was given the formal status of being a 
preparation for further studies at Läroverken. In 1894, it was formally settled 
that the three first years of Folkskolan should constitute the standard re-
quirements for entrance to Läroverken. Folkskolan was, however, not com-
pulsory and there were different private alternatives. When the municipal 
version of Realskolan, the so-called “Mellanskolan” (grades 7-10), was in-
troduced in 1909, the importance of Folkskolan was upgraded even further. 
Now, the full six years in Folkskolan should provide the preparation for fur-
ther education at Mellanskolan. Still, the municipal Mellanskolan was 
mainly established in rural areas and smaller towns without secondary 
schools. It was not until 1927 that the six years of Folkskolan became a 
preparation for further studies throughout the country. That year, Realskolan 
was reformed and the students could enter after the fourth or the sixth year 

                               
62 At the beginning of the 20th century, the schools of Läroverken were situated in larger 
towns and they comprised from three up to nine years. The schools of Folkskolan were situ-
ated all over the country, but they were different depending on the density of the population. 
In the larger towns, the schools comprised several classes with one teacher per class. In the 
countryside, one teacher was often responsible for two classes. In more remote parts of the 
country, the schools were not even stationary. 
63 Richardson (1999), p. 49 
64 Richardson (1999), pp. 68-69   
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of Folkskolan. Furthermore, even though Folkskolan was not compulsory, 
state funding for private schools was terminated in 1927, which of course 
made the private alternatives less attractive.65 

The crucial step in this integration process was taken in the early 1950’s, 
when the government decided that Folkskolan, Realskolan, and Flickskolan 
were to be replaced by one the compulsory school type (year 1-9), the so-
called Grundskolan. The Gymnasium at Läroverken was to be replaced by 
the new Gymnasieskolan (grades 10-12[13]). Grundskolan was introduced in 
1962 and the new Gymnasieskolan in 1964.66 However, Grundskolan had not 
been prepared in a hurry. As early as 1940, the government had initiated a 
commission that was charged with finding a general solution to an array of 
pressing problems, problems that were considered not recent even in 1940. 
One of the pressing problems was the transfer of students between the dif-
ferent school types.67 The background to this problem was the increasing 
number of students aiming at programs above Folkskolan 

Table 1.  

Year number of graduate in Real-
skolan 

number of graduates in the 
Gymnasium 

1900  968 
1910 1 502 1 544 
1920 2 197 2 048 
1930 3 970 2 248 
1940 7 005 3 839 
1950 9 474 4 497 
1960 27 968 9 136 

In 1842, the first regulations for a compulsory elementary school, i.e. Folkskolan, 
were launched. By 1900, a vast majority of the children in Sweden attended Folk-
skolan at least five years. From about this time, the number of students at Lär-
overken, i.e. Realskolan and the Gymnasium, began to increase. The numbers in the 
table are taken from Richardson (1999).68 

Hence, we can discern an ambition among the politicians in charge to en-
hance the standards of Folkskolan during the period 1905-1962. Another 
important group of actors were the teachers in Folkskolan. According to 
Englund (1994), the teachers in Folkskolan became much more organized 
during the first decades of the 20th century. They took control over the au-
thoring of textbooks and a more conscious educational debate was devel-
oped. Moreover, they questioned the current order at the teacher training 
institutes and the influence of the church over the schools.69 My point here is 
                               
65 Richardson (1999), pp. 68-70  
66 Richardson (1999), pp. 72-76 
67 Richardson (1978), pp. 11-34 
68 Richardson (1999), p. 61. 
69 Englund (1994), p. 95 
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that the teachers in Folkskolan were not a group of passive bystanders; they 
took an active part in the development of Folkskolan. As a matter of fact, 
some of the ministers of education during the period 1905-1962 had a back-
ground as teachers in Folkskolan.70 

A second integration process was the admission of women to secondary 
schools. As I have mentioned, special schools for girls were started during 
19th century, providing a sort of secondary education that could lead to uni-
versity. In 1905, girls were allowed to enter some of the schools that be-
longed to Realskolan, but the number of schools open to both boys and girls 
increased. The schools that belonged to Mellanskolan, introduced in 1909, 
were open to girls. In 1927, as was the Gymnasium.71 

                               
70 Richardson (1999), p. 196 
71 Richardson (1999), p. 78 
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Figure 1.  

grade
1 2 3 4 5 6 7 8 9 10 11 12 13

Folkskolan
In 1919, Folkskolan comprised six years throughout the whole country. 
In 1937, Folkskolan was officially extended to seven years, a reform that was completed only in 1949
In some municipalities, Folkskolan was extended to eight, nine or even ten years.

6-year Realskola
Introduced in 1905.

Mellanskolan
Introduced in 1909. Mellanskolan was municipal version of Realskolan.    

5-year Realskola

4-year Realskola
In 1927, the first and the second year of Realskolan was dropped.
The students could chose to enter the 5-year program or the 4-year program 
after four or six year in Folkskolan.

3-year Realskola
Introduced in 1957, in connection to the preperations for Grundskolan

Flickskolan, 7-year theoretical program

Flickskolan, 5-year practical program

4-year Gymnasium
Entrance after the last or the second last year at Realskolan

3-year Gymnasium

6-year Lyceum at Läroverken
Introduced in 1927, comprised Realskola and Gymnasium.
Terminated during the 1940's.

9-årig grundskola
By the school reform of 1962, Folkskolan, Flickskolan, Mellanskolan and Realskolan were replaced by Grundskolan. 

3-årig gymnasieskola

4-årig gymnasieskola
Only the technical program.

By a school reform in 1964, the Gymnasium at Läroverken was replaced by the so-called Gymnasieskolan.
 

Normally, the students began grade 1 the year that they turned 7. 
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Arguments about geometry instruction in some Western 
countries, 1905-196272 
Humanistic programs and mathematics instruction 
At the beginning of the 20th century, in Germany, England and the USA, the 
common argument as to why courses in axiomatic geometry, or any courses 
in pure mathematics, should be included in school mathematics was that 
these courses provide optimal training in reasoning. This argument pros-
pered in contexts where secondary education programs preparing for univer-
sity were supposed to provide general Humanistic education. However, the 
mathematics courses could be quite different among Western countries. 
Moreover, the notion ‘training in reasoning’ contained more than training in 
logic.   

The situation in Prussia/Germany 
From the early decades of the 19th century and up to the beginning of the 20th 
century, secondary education in Prussia was influenced by a Neo-Humanist 
view of education. Following Schubring (1991), the Neo-Humanists under-
scored the value of a general education based on classical languages and 
mathematics. This type of education was supposed to function as a counter-
weight to theological and moral dogmas as well as the specialized Realistic 
educations.73 According to Jahnke (1990), a central standpoint of the Neo-
Humanists was that scientific training was considered necessary for the pro-
motion of sound reasoning. The value of knowledge based on everyday ex-
                               
72 This chapter is unbalanced in the sense that I pay much attention to mathematics instruction 
at the secondary level and not at the common or primary level. The reason for this is that I 
have not found any comprehensive literature on the latter subject. Another circumstance is 
that the works that I refer to are written by authors that have had different points of departure. 
One basic difference is that geometry instruction is given considerable attention in the works 
on mathematics instruction in England, while algebra and analytical geometry are treated 
more extensively in the works on the situation in Prussia/Germany. Consequently, geometry 
instruction in Prussia/Germany during the 19th century is mentioned rather briefly. 
73 Schubring (1991), pp. 71-76. However, mathematics did not have the same prominent place 
in all educational systems of the German countries during the 19th century. Schubring (1989) 
links these differences to religion. At most European universities, up to end of the 19th cen-
tury, the courses at the philosophical faculties, to which mathematics belonged, functioned as 
a preparation for further professional educations at the faculties of medicine, law or theology. 
Moreover, for the training in these professions, mathematics played a minor role. From the 
late 17th century and onwards, the philosophical faculties had a successively  weaker position 
at the Catholic universities. Eventually, the curricula of these faculties, including mathemat-
ics, were taken over by secondary schools. At the Protestant universities, on the other hand, 
the philosophical faculties were assigned a greater status, which also included mathematics. 
One of the crucial innovations in Protestant Prussia, in this respect, was to transfer the respon-
sibility for the training of secondary school teachers from the theological faculty to the phi-
losophical faculty. Schubring (1989) stresses, that this reform changed the status of the phi-
losophical faculty from just giving preparatory courses to having advanced professional pro-
grams; he also links the occurrence of mathematics as an autonomous discipline to this re-
form. [Schubring (1989), pp. 175-177] 
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periences was downgraded in this respect; that kind of knowledge was seen 
as less worthwhile due to tacit assumptions and imprecise concepts.74  

At the Prussian Gymnasiums (secondary education comprising nine 
years), great emphasis was put on pure mathematics. Applications of any 
kind were scarcely treated, at least by the introduction of the new Prussian 
curriculum in the 1820’s.75 The major topics were algebra and algebraic 
analysis, while classical geometry was allotted much less time. The first four 
books of Euclid’s Elements were treated only in the second year, and then 
together with arithmetic and algebra. The most important propositions of 
book 6, 11 and 12 should be treated in the third year. From the fourth year 
and onwards, analytical geometry replaced classical geometry.76 According 
to Schubring (1991), the mathematics courses at secondary level in Prussia 
during the 19th century were different depending on whether you studied at 
the Gymnasium or the Realschule. At the so-called Realschulen, which were 
being established in even greater numbers by the middle of the 19th century, 
the courses in mathematics were more focused on applications.77 However, 
Jahnke (1994) points out that the mathematics courses at the Realgymnasien 
and Oberrealschulen were quite similar to the mathematics courses at the 
Humanistic Gymnasiums.78   

Jahnke (1990) identifies two leading figures in the efforts to develop the 
Prussian curricula in mathematics: August Crelle (1780-1855) and Martin 
Ohm (1792-1872). (It is worth noting that Crelle had a background in engi-
neering.) Their motivation for giving pure mathematics such a prominent 
position was partly its training in logic. Another argument was that studies in 
pure mathematics imbued students with a critical mind. One component of 
this critical mind concerned the students’ reliance on spatial intuition and 
their experiences of tangible reality. The other component concerned the 

                               
74 Jahnke (1990), pp. 14-26 
75 Jahnke (1990), p. 347.  
76 Jahnke (1990), pp. 342-351. Regarding the term algebraic analysis, Jahnke (1994) points 
out that fact that the advanced courses during the last five grades at the Gymnasium was 
based on Euler’s theory on functions in the first volume of his Introductio in analysis infinito-
rum. Jahnke (1994) describes it in the following way: “Essential for Euler’s conception was 
the algebraic view of the concept of function, and, in a natural way, this also led to an alge-
braic view of infinitesimal calculus. Objects and most important tools of Euler’s Introductio 
were finite and infinite algebraic expressions, that is, polynomials and power series, finite and 
infinite products, and continued fractions as well as their transformations.” [Jahnke (1994), p. 
420] This Eulerian conception of analytical geometry dominated mathematics instruction at 
the secondary level in Prussia and the other German states throughout the 19th century.[Jahnke 
(1990), pp. 342-351, Jahnke (1994), pp. 426-427] It was not until the beginning of the 20th 
century that derivatives and integrals were included in the curriculum. [Jahnke (1994), pp. 
426-427] Jahnke (1994) also uses the term geometrical analysis; as I understand it, this is 
when you use algebra or algebraic analysis in connection with geometry, for instance when 
conic sections are treated algebraically. 
77 Schubring (1991), pp. 71-84 
78 Jahnke (1994), pp. 425-426 



 37

possibilities of applying pure mathematics.79 According to Crelle, mathemat-
ics is a rather obtuse tool since the full complexity of a problem cannot be 
accounted for by mathematical formulas. Knowledge in pure mathematics 
should therefore instill awareness of the possibilities of applying mathemat-
ics in different situations; Jahnke (1994) defines it as a general ability to 
orient oneself or a faculty of judgment. Moreover, Jahnke (1994) finds it 
relevant to talk about “indirect applications” of mathematics.80 He puts for-
ward the following quote by Crelle:  

Only after a mathematical spirit has been awakened by assiduously exercis-
ing judgment by means of mathematics (without regard for applications), and 
only then, may one quite boldly count on the uses of mathematics in applica-
tions. Mere knowledge of mathematics, intended for applications … is not 
sufficient for appropriate applications, but the guiding principle must be the 
mathematical spirit, the mathematical way of thinking. Only he who tackles 
applications on this basis will err less easily, for he will first of all examine 
what mathematics can properly achieve, and where and how the tool can be 
usefully applied. … Hence it is quite right that mathematics be exercised as 
much as possible in schools … at first without any considerations of applica-
tions in common life.81 

The implementation of the courses in pure mathematics was not undisputed, 
however; Crelle even suggested that common arithmetic should not be 
taught at the Gymnasiums.82 School officials, parents, and students objected 
to the lack of practical everyday applicability in connection with the teaching 
of common arithmetic. As a result, this type of everyday applications re-
mained as a part of mathematics instruction at the Gymnasiums.83 In con-
trast, the theoretical applications of arithmetic and algebra were rather lim-
ited at the Gymnasiums throughout the 19th century. The main item of the 
more advanced course was pure mathematics, i.e. the structural core of alge-
bra and algebraic analysis. As soon as there were cut backs in courses, it 
concerned the theoretical applications, e.g. the algebraic treatment of conic 
sections.84  

                               
79 Jahnke (1990), pp. 19-20, 341-342. Here, Jahnke (1990) points to the influence of Kant’s 
writings about mathematics, intuition, and reasoning. According to Jahnke (1990), Crelle and 
Ohm recognized Kant’s claim that an a priori spatial intuition constitutes the foundation for 
mathematical reasoning. 
80  Jahnke (1994), pp. 419-420.   
81 Jahnke (1994), p. 419. The quote was originally printed in Crelle (1845), pp. IX-X. The 
translation is by Jahnke. The italics are Crelle’s. Jahnke links this view to Kant and his Cri-
tique of Pure Reason, where Kant underscores that the application of rules and formulas in 
science requires an ability to make good judgments. 
82 Jahnke (1986), p. 89 
83 Jahnke (1986), p. 87; Jahnke (1994), pp. 422-424 
84 Jahnke (1994), pp. 424-426  
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The situation in England 
Following Richards (1988) and Howson (1982), mathematics instruction at 
the secondary and tertiary levels was primarily considered a part of a general 
Humanistic education. This was the case throughout the 19th century. In Eng-
land, this position within a Humanistic education was based on the wide-
spread conception that mathematics, especially geometry, constituted the 
optimal subject for the training of reasoning. This kind of training should lift 
and ennoble the intellectual as well as the spiritual minds of the students.85 In 
contrast to the situation in Prussia/Germany, classical geometry dominated 
the mathematics courses of the Humanistic curricula of the English grammar 
and public schools.86 

Another argument in England was that geometry instruction constituted a 
means to attain true knowledge about the real world.87 This view of mathe-
matics is described by Richards (1988) as descriptive, meaning that true 
mathematical propositions must be true propositions about the real world. 
For instance, a definition or an axiom in geometry is inappropriate unless it 
expresses some essential feature of physical space. Moreover, mathematical 
knowledge was considered to be genuinely geometrical, while algebra and 
analytical geometry, due to its symbolism, was treated with mistrust in this 
respect.88 

The situation in the USA 
By the onset of the 20th century, training in reasoning was the leading argu-
ment for having geometry as a part of the mathematics courses at the High 
Schools in the USA. According to González and Herbst (2006), the main 
point was not to learn about geometrical concepts and ideas, but to learn, 
practice, and apply logical deductions. Moreover, the proponents of this 
                               
85 Richards (1988), pp. 14-27, 40-41; Howson (1982), pp. 88-90 
86 Jahnke (1990), pp. 334-335 
87 Richards (1988), p. 29-33. These ideas about rational reasoning and geometry instruction 
are explained further by Richards. This is done mainly through a study of articles and essays 
by Whewell, Herschel, De Morgan, and Cayley.  
88 This was not just a standpoint espoused in philosophical discussions; Richards points out 
that De Morgan and Cayley, some of England’s leading mathematicians of that time, engaged 
in discussions where they tried to give geometrical explanations for new results in algebraic 
analysis.[Richards (1988), pp. 20-39, 47, 50-55] However, Whewell’s and Herschel’s basic 
convictions regarding the nature of mathematical knowledge also maintained its differences. 
Whewell favored a Kantian view of this matter, arguing that geometrical knowledge was a 
priori our sense experiences. In England, this was a rather rare opinion during the 19th cen-
tury, according to Richards (1998). Herschel, De Morgan, but also a person like John Stuart 
Mill and many others, argued, albeit in different ways, that geometrical knowledge is wholly 
empirical.[Richards (1988), pp. 25, 35] Richards especially mentions Mill’s writings on 
mathematics and science. He very much shared the view that mathematics is descriptive in 
nature. Mill is interesting to Richards (1998), since he was a prominent intellectual outside the 
academic elite connected to the universities of Cambridge and Oxford. Hence, the ideas of 
Whewell, Herschel, and De Morgan concerning geometry, mathematics, and science were not 
restricted to groups in Oxford and Cambridge, Richards argues.[Richards (1988), pp. 34-39] 
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argument claimed that geometry was the ultimate school subject for this type 
of training. González and Herbst (2006) also point out that this argument 
included the view that knowledge in making logical arguments was transfer-
able to areas outside mathematics, such as newspaper reading and democ-
ratic participation. Hence, they are here emphasizing that training in reason-
ing was seen as a preparation to become a functional citizen.89 This particular 
concept, i.e. the functional citizen, does not occur in the literature on 
mathematics instruction in Prussia/Germany and England during the 19th 
century. My point here is that the argumentation about geometry instruction 
and training in reasoning were used in discussions on education and the crea-
tion of a democratic society.  

Changing arguments about mathematics instruction during the 
early 20th century 
By the turn of the 20th century, the organization of mathematics instruction at 
the secondary level was criticized in different quarters. Some criticized the 
whole Humanistic conception of mathematics instruction, while other leaned 
towards more moderate changes. 

The situation in Germany 
At the beginning of the 20th century, the German educational system went 
through important changes. Also this time, mathematics was a major issue. 
Jahnke (1994) is here pointing at some underlying factors to why the 
mathematics course at the secondary level was reformed.90 

� Algebraic analysis occupied an important part of the curriculum, 
but it had lost its scientific significance during the second half of 
the 19th century.91 

� The general conception that there is a close bond between educa-
tion and theoretical science was replaced by a view where the em-
phasis was put on experiences of particulars. 

� The increasing importance of technology undermined the position 
of pure mathematics.    

                               
89 González & Herbst (2006), pp. 13-15. González and Herbst (2006) have investigated the 
argumentation about geometry instruction in the USA during the 20th century. Their main 
sources have been articles in teachers’ journals and official investigations. 
90 Jahnke (1994), pp. 426-427 
91 Probably, Jahnke is referring here to the process where set theory became a foundation for 
algebra and analysis. This would then have caused the loss of scientific significance of alge-
braic analysis, as Jahnke defines it. In a previous footnote I have described how Jahnke con-
siders algebraic analysis as an equivalent to Euler’s work Introductio in analysis infinitorum. 
In this work, a function, for instance, is defined as an algebraic expression, which we may 
compare with Cantor’s or Dedekind’s definitions, in the late 19th century, where a function 
was defined as a relation between two sets of numbers. 
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One of the leading actors was one of the most prominent mathematicians of 
that time, Felix Klein. According to Jahnke (1994), the reformation of the 
mathematics courses was a battle between two different mathematical para-
digms: on one hand, those who defended the extensive courses in algebraic 
analysis, on the other, Klein and his followers, who wanted to insert differ-
ential and integral calculus together with geometrical applications. Schu-
bring (1989) also stresses that one of Klein’s concerns was the technical 
universities. A major problem to Klein was the low standard of mathematics 
instruction at these institutions. He linked this low standard to the mistrust 
between engineers and mathematicians; the former group cared for applica-
tions and disdained pure mathematics and vice versa. This was a conflict that 
Klein aimed to resolve. As a result of Klein’s efforts, differential and inte-
gral calculus became major topics in the mathematics courses in the secon-
dary schools, both in the Gymnasiums and the Realschulen.92 

An important aspect of Klein’s involvement in mathematics instruction 
was his view of intuition, rigor, and reasoning. According to Rowe (1985), 
Klein’s view on the goal of mathematics instruction was in tune with the 
Neo-Humanistic conception of pure mathematics and training in reasoning.93 
Rowe (1985) backs his standpoint by the following passage in Klein’s Er-
langer Antrittsrede from 1872:  

By the word “applications” I am thinking much more of the theoretical ser-
vices performed by mathematics in the development of other sciences – I am 
also thinking in particular of the formal educational value that the study of 
mathematics has. … the value of mathematics lies less in the knowledge 
gained through its applications, although this is certainly not to be underval-
ued, than through the training of the mind gained through working with pure 
mathematics. In this sense, the study of mathematics, as has long been recog-
nized, has become more than ever a necessity for the general scientist, and 
especially as exact investigations are becoming more widespread in the indi-
vidual disciplines. Mathematics as a formal educational tool – that is the key 
phrase which I would implore students of the sciences and medicine to bear 
in mind.94  

However, Rowe (1985) suggests that Klein’s idea of formal value was “quite 
different from the formalism that dominated German mathematics instruc-
tion”. Rowe (1985) sees the following quote of Klein as a sharp criticism of 
the “Formalismus” at the Gymnasiums and the universities.  

Instead of developing a proper feeling for mathematical operations, or pro-
moting a lively, intuitive grasp of geometry, the class time is spent learning 
mindless formalities or practicing trivial tricks that exhibit no underlying 
principle. One learns to reduce with virtuosity long expressions that are de-

                               
92 Schubring (1989), pp. 181-192.  
93 Rowe (1985), p. 128.  
94 Rowe (1985), pp. 137-138. Translation by Rowe. 
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void of meaning, or to apply one’s diligence to the solution of artificially 
constructed equations that are contrived in such a fashion that one cannot 
even begin to make progress unless one knows some special trick in advance. 
When, however, the student with this sort of training is required to develop 
an independent idea or answer a question that is unfamiliar to him, he lacks 
all trace of individual initiative.95 

According to Rowe (1985), these remarks on mathematics instruction reflect 
Klein’s “lifelong preference for mathematical insight rather than computa-
tional virtuosity, intuition rather than rigor; and not at least, his propensity 
for geometric as opposed to analytic modes of thought.”96 Hence, Klein was 
not abandoning the idea about mathematics instruction and training in rea-
soning; he was criticizing what he saw as excesses in algebraic manipula-
tions. We can compare this to the Perry movement in England, which was 
more skeptical about mathematics instruction and training in reasoning. 

Changing arguments about geometry instruction in England  
During the 19th century and the early 20th century, the prevailing view of 
geometry instruction and general education in England was challenged. Fol-
lowing the works of Richards (1985), Howson (1982), and Price (2003), the 
criticism came from three directions.  
1. Educators who argued that geometry instruction together with the text-

books could be made more palatable to the students.97 In comparison to 
the later two groups, this group did not demand radical changes of 
courses or goals. 

2. Leading intellectuals who refuted classical Euclidean geometry and 
Euclid’s Elements as a textbook from a scientific point of view.98  

3. Those who advocated another kind of general education. They rejected 
the exclusive effect of geometry instruction on reasoning and demanded 
that mathematics instruction, geometry included, should be adapted to 
practical matters.99 

Let us first consider group number one. Beginning in the 1860’s and a cou-
ple of decades onward, alternative elementary textbooks in axiomatic ge-
ometry were published. However, none of these textbooks was a success, 
and they were ruthlessly criticized by mathematicians, e.g. De Morgan, who 
had superior skills in mathematics.100  
                               
95 From Rowe (1985), p. 139. Translation by Rowe. 
96 Rowe (1985), p.  
97 Howson (1982), pp. 123-137, Richards (1988), pp. 164-185 
98 Price (2003), p. 466 
99 Howson (1982), pp. 141-163; Richards (1988), pp. 185-198; Price (2003), pp. 465-466 
100 Both Richards (1985) and Howson (1982) discuss essays and textbooks by James Wilson 
in particular. Richards (1985) points out that Wilson considered his book as a rigorous alter-
native to Euclid. Hence, it was not a textbook in applied geometry. Richards (1985) gives the 
following description: “Wilson abandoned the definitions and axioms on which Euclid had 
based his theory in favor of a totally new approach. The linchpin of Wilson’s innovation was 
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In the second group of critics, we find intellectuals like Bertrand Russell 
who engaged in discussions on geometry instruction. In an article from 1902 
in a periodical on mathematics instruction, Mathematical Gazette, Russell 
refuted Euclid’s Elements as a textbook in schools. In this article, he re-
sumed the critique regarding tacit assumptions and the lack of rigor that had 
been delivered during the 19th century. Due to these gaps, he found the ad-
vantages of Euclid’s Elements highly exaggerated with respect to logic.101  

Finally, the third group of critics, which include the so-called Perry 
movement, was active at the beginning of the 20th century. The leading per-
son of this group of critics was John Perry – a mathematics teacher at a tech-
nical college. Perry and his followers rejected the usefulness of pure mathe-
matics and its effects on reasoning. They also considered it a major problem 
that the final degree examinations had to adhere to the standards of pure 
mathematics, which in the case of geometry was equivalent to the axiomatic 
method. As Perry saw it, this restricted the possibilities of giving courses in 
applied mathematics. Perry’s efforts were successful and eventually the 
regulations were changed during the first decade of the 20th century. Perry 
also advocated teaching methods where geometry and the justification of 
propositions were treated in an experimental fashion and not by means of the 
axiomatic method. Another critic was Charles Godfrey (1876-1924), whose 
comment on the situation in England illustrates the spirit of the Perry move-
ment: 

In England we have a ruling class whose interests are sporting, athletic and 
literary. They do not know, or if they know do not realize, that this western 
civilisation on which they are parasitic is based on applied mathematics. This 
defect will lead to difficulties, it is curable and the place for curing it is 
school.102 

However, this attitude did not entail that all the critics rejected axiomatic 
geometry. Godfrey, for instance, authored textbooks according to the axio-
matic method that were to serve as an alternative to Euclid’s Elements. I will 
soon return to Godfrey’s textbooks below.  

During the 20th century both practical geometry and the experimental ap-
proach were indeed picked up at secondary schools and colleges.103 

                                                                                                                             
the basically indefinable concept of “direction.” He introduced this notion in his fourth defini-
tion: “A straight line is a line which has the same direction at all parts of its length.” It was 
elaborated somewhat further in the sixth definition: “Two straight lines that meet one another 
have different directions, and the difference of their direction is the angle between 
them.””[Richards (1988), p. 180] 
101 Russel (1902), pp. 165-167 
102 Howson (1982), p. 158 
103 Howson (1982), pp. 141-163; Richards (1988), pp. 185-198; Price (2003), pp. 465-466 
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Changing arguments about geometry instruction in the USA  
During the first half of the 20th century the argument regarding geometry 
instruction and training in reasoning was challenged, by a line of arguments 
that González and Herbst (2006) denote as utilitarian. The main goal of the 
proponents of this argument was to match the geometry courses to the de-
mands of the students’ future jobs, which mainly was the job of a worker. It 
is not obvious that this goal leads to geometry courses dominated by calcula-
tions of lengths, areas and volumes and various applications, whereas the 
axiomatic method is cancelled. Future workers may also need training in 
logic. The crucial detail in the argumentation of the utilitarians was that 
teaching should contain apparent references to the future jobs of workers. In 
that perspective, practically oriented geometry courses without the axiomatic 
method were considered more appropriate.104 

According to González and Herbst (2006), the 20th century contains the 
rise and fall of the argument regarding training in reasoning. This was the 
leading argument at the beginning of the century, but in an official report as 
early as 1909, the utilitarian argument had become established.105 

Experiments and spatial intuition – ways to develop geometry 
instruction 
According to Fujita, Jones & Yamamoto (2004), experimental and intuitive 
approaches to geometry instruction in secondary schools were discussed in 
Germany and England by the turn of the 20th century. Influential opinion 
makers in these discussions were John Perry in England and Felix Klein in 
Germany. In both these countries, official reports occurred that stressed the 
importance of such teaching methods. Moreover, these reports gained influ-
ence and experimental and intuitive approaches were included in the first 
geometry courses at the secondary schools.106 

The investigation of Fujita et al (2004) shows that textbooks were pro-
duced in accordance with these guidelines regarding experiments and spatial 
intuition. Among these we find textbooks by Treutlein (1845-1912) in Ger-
many and Godfrey (1876-1924) in England. Godfrey’s textbooks in axio-
matic geometry, intended for later years, also included exercises with an 
experimental and intuitive approach.107 Fujita et al (2004) claims that these 
textbooks of Treutlein and Godfrey were popular among the teachers. In the 
case of Godfrey’s alternative to Euclid’s Elements, Howson (1982) considers 
this geometry textbook to have been the most popular in England by the first 
years of the 20th century.108    
                               
104 González & Herbst (2006), pp. 16-18 
105 González & Herbst (2006), p. 27 
106 Fujita, Jones & Yamamoto (2004), pp. 2-3 
107 Fujita, Jones & Yamamoto (2004), p. 6 
108 Howson (1982), p. 150. Godfrey’s textbook was not the only alternative to Euclid’s Ele-
ments, other did appear as well. An important detail is that the authors of the alternative text-
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According to Fujita et al (2004), both Treutlein and Godfrey recognized 
two modes of thinking in connection with geometry:  
1. logical thinking 
2. an ability related to intuition  
Treutlein called the later ability “das raumliche Anschauungsvermogen”, 
which is translated to “spatial intuitive ability” by Fujita et al (2004). God-
frey called this ability the “geometrical eye”, which he defined as “the power 
of seeing geometrical properties detach themselves from a figure”. Both 
Treutlein and Godfrey underscored the importance of developing this kind of 
intuitive thinking in connection to geometry instruction.109 Godfrey exempli-
fied this kind of thinking in the following way: 

Experimental and intuitional methods are not identical. … Take the equality 
of vertically opposite angles. If I measure the angles I am proceeding experi-
mentally; if I open out two sticks crossed in the form of an X, and say that it 
is obvious to me that the amount of opening is equal on the two sides, then I 
am using intuition.110 

By including exercises that activated the students, the author intended for 
them to become aware of plane surfaces in an intuitive way. An example 
from one of Treutlein’s textbooks is an exercise where the students are sup-
posed to make new figures by moving triangles.111 

 

According to Howson (1982), Godfrey’s design of geometry textbooks took 
a new turn during the early 1920’s as he tried to replace proofs based on 
congruence by more informal ones based on symmetry. However, these 
textbooks did not become a success.112     

                                                                                                                             
books did not abandon the deductive style. The introduction of alternatives to the Elements 
was not just a question of changing books; the new textbooks were also matched with changes 
in the requirements for the final exams at Cambridge University. [Howson (1982), pp. 150-
152] 
109 Fujita, Jones & Yamamoto (2004), pp. 3-8 
110 Fujita, Jones & Yamamoto (2004), p. 6 
111 Fujita, Jones & Yamamoto (2004), p. 4 
112 Howson (1982), p. 167 
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A detail regarding the work by Fujita et al (2004) is that they mainly treat 
geometry textbooks during the first half of the 20th century, whereas they do 
not pay the previous century any particular attention. However, they do not 
say that the ideas about intuition and geometry instruction were innovations 
of the early 20th century. On the contrary, they suggest that both Treutlein 
and Godfrey were influenced by J. F. Herbart (1776-1841). As early as 1802 
Herbart argued that imaginative skills are important in connection to geome-
try instruction.113 Jahnke (1986) suggests that intuition and visualizations 
were discussed in connection to school mathematics in Prussia/Germany 
throughout the 19th century.114  

An important aspect of the works of Howson (1982) and Fujita et al 
(2004) is that they display that experiments and intuitive approaches indeed 
were a part of geometry instruction during the first decades of the 20th cen-
tury. These questions were indeed debated; they were taken up in reports, 
and textbooks were designed according to these ideas. 

Apart from the development of textbooks, Treutlein was also involved in 
a movement that advocated a teaching method called “Kopfgeometrie” or 
Mental geometry. The history of this method is given by Schmidt (2002). 
According to this method, the students are supposed to consider geometrical 
objects and theorems by pure imagination; they are not supposed to use pen-
cil and paper. By detailed descriptions, the teacher guided the students 
through definitions of concepts, constructions, and theorems. Schmidt (2002) 
links this teaching method to the pedagogical works of Pestalozzi and Her-
bart, where the importance of spatial intuition in connection with geometry 
instruction is emphasized. According to Schmidt (2002), the first text on the 
subject occurred in the early 19th century in today’s Germany, but the 
method only became influential in Germany during the period 1890-1933.115 

However, the attempts to introduce experimental and intuitive approaches 
to geometry did not succeed in all European countries. Toumasis (1990) 
suggests that Greek mathematicians and educators have felt a certain obliga-
tion to protect and maintain an original approach to geometry. Throughout 
the 20th century, cultural and historical arguments have been very influential 
in the struggle to keep Euclid’s Elements as a textbook.116 

New forums for mathematics instruction - L’Enseignement 
Mathematique and ICMI  
Schubring (2003) stresses that international cooperation regarding mathe-
matics instruction before 1900 was almost non-existent and that mathematics 
instruction was quite different in the Western countries.117 This situation 
                               
113 Fujita, Jones & Yamamoto (2004), p. 11 
114 Jahnke (1986), p. 93 
115 Schmidt (2002), pp. 5-32 
116 Toumasis (1990), pp. 491-508 
117 Schubring (2003), pp. 54-55 
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began to change with the foundations of the journal L’Enseignement Mathe-
matique in 1899 and the International Committee for Mathematics Instruc-
tion, ICMI, in 1908. When the ICMI was founded, L’Enseignement Mathe-
matique became its official journal.118 Anyhow, the purpose of these institu-
tions was not just to facilitate international cooperation. The purpose was 
also to improve mathematics instruction. At this juncture we should recall 
Felix Klein, the first president of ICMI, and his involvement in the reforma-
tion of school mathematics. We should also notice Henri Fehr (1870-1954), 
another of the founders of the ICMI and its first general secretary. According 
to Furinghetti (2003), his articles in L’Enseignement Mathematique con-
cerned the following topics:119 

� innovations in mathematical programs and their links with devel-
opment of science and technology 

� the relationship between pure and applied mathematics and its in-
fluence on mathematics teaching 

� teacher training 
� new trends in mathematics teaching 

One of the three British delegates at the ICMI was Charles Godfrey. 
Hence, in the founding of L’Enseignement Mathematique and the ICMI, 

we see not only an international forum for discussions on mathematics in-
struction, but also a leadership composed by prominent mathematicians and 
educators with a keen interest in the reformation of mathematics instruction.   

From the beginning, ICMI was supposed to deal with mathematics in-
struction at the secondary level, even though there was a tendency to focus 
on the links to university mathematics. Eventually, the work was extended to 
lower levels as well.120 The most urgent topic during the first years was ge-
ometry instruction. Of the 504 articles in L’Enseignement Mathematique 
during the period 1899-1914, 150 were about geometry.121 Furinghetti (2003) 
describes the articles in the following way: 

The majority of the contributions were on geometry. That this was at that 
time considered to be the backbone of the mathematical instruction at secon-
dary level in many countries is shown by the many letters from readers dis-
cussing themes related to Euclidean geometry. … Often one feels that behind 
many articles lay the problem of answering such questions as the role of rig-
our and axiomatic methods in the teaching of mathematics. This subject is 
linked to the foundational debate, very much alive in those years. Indeed, fol-
lowing the birth of ICMI the debate on the place of foundations in mathe-
matical instruction became the object of specific inquiries published in the 
journal.122 

                               
118 Furinghetti (2003), pp. 28-29 
119 Furinghetti (2003), pp. 25-29. 
120 Schubring (2003), p. 57 
121 Furinghetti (2003), p. 31 
122 Furinghetti (2003), p. 32 
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At the ICMI conference in Milan 1911, axioms and rigor in secondary 
schools was one of the two major themes. Also intuitive and experimental 
approaches in mathematics were an important issue. At the ICMI conference 
in Cambridge 1912, intuition and experimental evidence was one of the two 
major themes.123 

However, these were not the only main issues treated within the ICMI. 
Others were for instance Felix Klein’s other favorite issues: the extension of 
courses in calculus and the relationship between pure and applied mathemat-
ics. According to Schubring (2003), his efforts to extend the calculus courses 
at the secondary level were successful also outside Germany.124 

Changing arguments about geometry instruction during the 
1950’s 
As I have mentioned in Part A, some arguments were more influential than 
others in the Swedish debate on mathematics instruction during the 1950’s 
and 60’s. One of these arguments was based on the claim that school 
mathematics was old-fashioned from a scientific point of view. I would say 
that this argument was linked to the international discussions about mathe-
matics instruction among educators and mathematicians.  

One of the best-known expressions in the discussions on geometry in-
struction during the 1950’s and 60’s is “Euclid must go”, expounded in 1959 
by the French mathematician Dieudonné at a conference in Royaumont in 
France. Howson (2003) implies that this cry for change was not as drastic as 
we might think. First of all, textbooks that followed Euclid very closely were 
not common at the secondary level in the Western countries at this time. 
However, they did have an axiomatic structure and the central theorems 
where the same as Euclid’s. Secondly, other mathematicians well before 
Dieudonné, like D.E. Smith in 1911, had expressed similar thoughts.125 

Dieudonné’s actual proposal for what geometry instruction should include 
and how it should be organized is described by Howson (2003) in the fol-
lowing way: 

Dieudonné himself recommended that up to the age of 14 the teaching of ge-
ometry should be “experimental” and “part of physics, so to speak”. But the 

                               
123 Furinghetti (2003), p. 43 
124 Schubring (2003), pp. 60-63 
125 Howson (2003), p. 116. Howson gives the following quote from Smith: “The efforts usu-
ally made to improve the spirit of Euclid are trivial [...] but there is a possibility […] that a 
geometry will be developed that will be as serious as Euclid’s and as effective in the educa-
tion of the thinking individual. If so, it seems probable that it will not be based upon the con-
gruence of triangles, but upon certain postulates of motion […]. It will be through some ef-
forts as this, rather than through the weakening of the Euclid-Legendre style of geometry, that 
any improvement is likely to come.” [Howson (2003), p. 118. Originally, Smith (1911)] The 
brackets in the quote are placed by Howson’s.   
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emphasis should not be on “such artificial playthings as triangles” but “on 
basic notions such as symmetries, translations, composition of transforma-
tions, etc”. An argument that in retrospect does not look terribly revolution-
ary. However, from the age 15 he proposed the introduction of the axiomatic 
method: “The axioms should be developed from the algebraic and geometric 
point of view, i.e. any notion should be given with both kinds of interpreta-
tion. […] the emphasis should be on linear transformations, their various 
types and the groups they form. Matrices and determinants of order 2 appear 
[…] in a natural way in this development.” [Dieudonné 1961]126 

The importance of Dieudonné’s call for a reformation of geometry instruc-
tion was not so much its actual suggestions; the changes that followed in 
several countries were far from consistent in following these suggestions. 
Dieudonné’s talk was more of an introduction to various activities. One ef-
fect was that several other prominent mathematicians produced articles about 
what school geometry should include and how it should be taught. Yet the 
vast majority of these suggestions remained were never realized.127 A second 
effect was that the content of the geometry courses indeed was radically 
reformed in several countries. Howson (2003) distinguishes two main paths 
for textbook and curricular development. 
1. To keep a thorough going axiomatic structure, but replacing the Euclid-

ean axioms with concepts and axioms from linear algebra, vector ge-
ometry or topology. 128 

2. To drop a thorough going axiomatic structure, but having “small packets 
of deductive geometry”. 129 

Howson (2003) is quite critical about these reforms and he considers them a 
major failure. One reason for this failure, he suggests, was that the initiators 
of the reforms were mathematicians with very little or no experience of 
teaching adolescents.130 Another reason was that radically different courses 
were supposed to be implemented during a time period that was too short. 
There was simply no time for the necessary preparations.131 Fey (1978) 
points out that there were critics during the 60’s and 70’s who found the 
New Math an excess in abstraction and symbolism.132 

González and Herbst (2006) describe the American discussions regarding 
geometry during the 1960’s somewhat different. A leading argument in the 
USA was that the students were supposed to experience the practice of being 
a mathematician, which included both the heuristic aspect as well as the 
proofs. This line of arguments included different notions about what the 
                               
126 Howson (2003), p. 118. The brackets are Howson’s. 
127 Howson (2003), p. 119 
128 Howson (2003), pp. 118-123 
129 Howson (2003), p. 123. Howson does not describe which axioms or theorems were used in 
these packets. 
130 Howson (2003), pp. 118  
131 Howson (2003). pp. 127-129 
132 Fey (1978), p. 345 
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courses should include; some debaters argued that non-Euclidean geometries 
would be more suitable than classical Euclidean geometry; others suggested 
linear algebra; some thought that problem-solving should be the main fea-
ture.133  

A summary of arguments about geometry instruction in the 
Western countries, 1905-1962 
The basic argument for having courses in axiomatic geometry, or other 
courses in pure mathematics, has been that they provide excellent training in 
reasoning. In Prussia/Germany and England during the 19th century, this type 
of argumentation was closely linked to the goal of the secondary schools to 
provide general Humanistic education. In this respect, algebra was the domi-
nating subject in Prussia/Germany; in England it was geometry. However, 
the notion of ‘training in reasoning’ encompassed more than logical think-
ing. Studies in pure mathematics were also supposed to cultivate the stu-
dents’ character. Furthermore, in England, studies in geometry were consid-
ered to provide knowledge about real space. In Prussia/Germany, studies in 
algebra were considered to develop a critical awareness about spatial intui-
tions, but also the possibilities of applied mathematics. Hence, in the justifi-
cations for having courses in pure mathematics at secondary level, there 
were clear connections to studies of things and nature. Consequently, it is 
not possible to uphold a clear distinction between the arguments about 
mathematics instruction and Humanistic and Realistic educations in the 
sense that the former type of education was focused merely on reasoning, 
while the latter type was focused merely on things and nature. Nonetheless, 
one should keep in mind that Realistic educations at the secondary level that 
contained courses in applied mathematics existed in the 19th century.          

In the first decades of the 20th century, mathematics instruction in Ger-
many was reformed; at secondary level, analytical geometry with differential 
and integral calculus became an important part of the courses. Yet the argu-
ments about pure mathematics and training in reasoning remained vital, for 
instance through Felix Klein. Also in the USA, about this time, similar ar-
guments about training in reasoning were influential. But, here we can also 
observe that the training in reasoning was linked to the aim of educating 
independent citizens for a democratic society.  

In England, the prevailing organization of geometry instruction was criti-
cized from two directions. One group of critics considered Euclid’s Elements 
inappropriate for training in reasoning; they were then referring to the logical 
gaps in Euclid’s axiomatic system that had been discovered during the 20th 
century. Another group of critics, the so-called Perry Movement, argued that 
axiomatic geometry had too much influence over the exams at the secondary 
                               
133 González and Herbst (2006), pp. 18-20 
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level. Moreover, they considered the positive effects on the students’ abili-
ties to reason to be highly exaggerated. Instead they advocated more practi-
cal applications. Also in the USA, arguments similar to those of the Perry 
Movement gained influence. 

However, it was not only the aims and content of geometry instruction 
that were discussed. The teaching methods and textbook design were also 
discussed during the early decades of the 20th century. Spatial intuition and 
experimental teaching methods were important concepts in the discussions 
on how to develop geometry instruction. These concepts did in fact gain 
influence in the design of textbooks and curricula. 

Another type of change that took place during the first decades of the 20th 
century concerned the opportunities of exchanging experiences and ideas 
internationally. Such contacts became much simpler via periodicals, reports, 
and conferences organized by the ICMI; this organization was founded in 
1908. 

During the 1950’ and 60’s, the mathematical fundaments of the geometry 
courses were being questioned, primarily by mathematicians interested in 
education. The development of textbooks and curriculum was then focused 
on how to replace axioms and theorems originating from Euclid’s Elements 
with new axioms and theorems from linear algebra, vector geometry, or to-
pology.  
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Part C – Professional debates about elementary 
geometry instruction 

Introduction 
In this part of the thesis, I describe the main arguments regarding geometry 
instruction in the specialized literature on mathematics intended for teachers 
in Folkskolan and Realskolan. Apart from the arguments in articles and es-
says, I also describe the directives in the curricula.   

Sources 
If we mean by a debate two or more debaters exchanging arguments in a 
journal, all sources that are used for this chapter were not a part of a debate. 
The chapter on geometry instruction in Folkskolan is primarily based on 
three essays that were used in teacher training. However, they were not plain 
teaching manuals; the authors brought up basic and general standpoints re-
garding mathematics instruction, and they provided arguments for why 
mathematics should be taught in a certain way. In this respect, the arguments 
that I describe in this chapter were part of a debate, or perhaps an introduc-
tion to a debate. As I see it, we can very well consider them as an incentive 
for actions and a source of arguments. 

Originally, my idea was to investigate articles on geometry instruction in 
journals intended for teachers in Folkskolan. However, the outcome of my 
search for such articles in one of the leading journals was quite meager. Hav-
ing browsed the editions between 1921 and 1938 of Folkskollärarnas 
tidning, one of the major journals, textbook reviews were the most exhaus-
tive articles on geometry instruction that I found. But the reviews are also a 
poor source; all reviews were kept in a neutral tone and the authors refrained 
from delivering any real criticisms; the authors did not really explicate any 
reasons for why they thought a textbook was good or bad. Therefore, I gave 
up the search for more exhaustive articles in other journals and I turned to 
treatises used in teacher training instead. 

In comparison, the supply of texts about geometry instruction in Realsko-
lan was different. The first complete work on mathematics instruction in 
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Realskolan appeared in 1956.134 This work was authored Halfrid Stenmark 
and it was named Matematikundervisningen i realskolan och motsvarande 
skolformer (~Mathematics instruction in Realskolan and corresponding 
school forms). The style of Stenmark is quite different from the treatises 
intended for Folkskolan. In the latter works, the authors established some 
basic methodological principles from which they derived teaching advice. 
Stenmark (1956), on the other hand, refrained from giving any type of basic 
principles. His work is more of a condensed, but still detailed, description of 
how to teach each part of the mathematics courses in Realskolan from the 
beginning to the end. Since Stenmark (1956) did not provide any arguments 
to why he gave certain advice, his work has not been one of my main 
sources. 

Instead, the most exhaustive articles on geometry instruction in Realsko-
lan occurred in the periodical Elementa135, but on some occasions also in the 
journals Tidskrift för skolmatematik, Tidning för Sveriges läroverk, Peda-
gogisk debatt and Pedagogisk tidskrift. Of these journals, Elementa and Tid-
skrift för skolmatematik were specialized in mathematics instruction. In Ele-
menta, physics and chemistry was treated as well.  

It is worth noticing that mathematics instruction in Folkskolan, on one 
hand, and in Realskolan, on the other, seems to have been discussed in dif-
ferent types of media. If mathematics instruction was not an issue in the 
other journals intended for Folkskolan, it says something about the status of 
the subject. Another aspect is then how the arguments about mathematics 
instruction were conveyed to the teachers. In the case of Folkskolan, the 
literature used in teacher training conveyed a set of principles from which 
recommendations for teaching were derived. An important aspect of these 
works is that the basic principles were never called in question; the argu-
ments of the authors went unchallenged. In the case of Realskolan, the basic 
principles were presented in journals. Here, they were discussed, but also 
criticized. In this way, the teachers in Realskolan could get acquainted with 
different standpoints on mathematics instruction. 

Certainly, it would be interesting to go through all journals intended for 
the teachers in Folkskolan and investigate whether or not mathematics in-
struction indeed was a neglected issue. Still, even though such an investiga-
tion would provide a nice backdrop to my investigations, I think that it falls 
outside the purpose of this thesis. Such a project takes aim at mathematics 
instruction in general and not geometry instruction in particular. 

                               
134 Stenmark (1956). At any rate, it is stated on the back of the book that this is the first work 
on mathematics instruction in Realskolan. As I see it, there is no reason to doubt this state-
ment.  
135 The periodical was founded in 1917 and its original name was Tidskrift för matematik, 
fysik och kemi, i.e. Journal for mathematics, physics and chemistry. In 1938 the name was 
changed to Elementa. In this treatise I use the name Elementa for the sake of brevity. 
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The professional status of the debaters 
Regarding the essays on geometry instruction in Folkskolan, it has been pos-
sible determine the professional status of two of the authors: Gösta Setter-
berg (1870-) and Frits Wigforss (1886-1953). Both worked as lecturers at 
teacher training institutes, Wigforss in Kalmar and Setterberg in Falun. 
Eventually, Wigforss’ became one of the leading actors in issues concerning 
mathematics instruction during the 1930’s, 1940’s and 1950’s. Apart from 
being the author of various textbooks in mathematics and Swedish, he was a 
member of various official commissions regarding the school system; he 
designed the first curricula that were used in the test schools preceding the 
introduction of Grundskolan;136 and he engaged in pedagogical and psycho-
logical investigations of children and learning in mathematics and language.  

The authors of the articles on geometry instruction in Realskolan were: 
Adolf Meyer (1860-1925), Henrik Petrini (1863-1957), Johan Samuel Hed-
ström (1876-1942), Hjalmar Olson (1884-1963), Ragnar Nyhlén (1892-
1949) and Carl-Erik Sjöstedt (1900-1979). The common feature of these 
authors is that they had a PhD in mathematics. Moreover, all of them worked 
or had worked as secondary school teachers. They were also authors of text-
books in mathematics, which in most cases were intended for the secondary 
schools. 

Apart from that, Meyer, Hedström and Olson were co-editors of the jour-
nal Elementa. Hedström and Olson were also involved in teacher training. In 
what way they were involved, I am not certain. However, they reveal that 
their articles on geometry instruction are based on lectures given to student 
teachers. 

In comparison to the other authors, Petrini and Sjöstedt authored several 
works that were not textbooks. According to the library catalogues, Sjöstedt 
published works on mathematics, science, philosophy, and education. Petrini 
had perhaps an even wider scope of interest as he published works on 
mathematics, science, religion, language, and education. 

During 1940’s and 1950’s, Sjöstedt had a high-ranking position at the na-
tional school board, i.e. Skolöverstyrelsen. 

If we consider the literature on the history of education in Sweden, Petrini 
is the most renowned of all the authors. Here, he is described as a person 
who accentuated the value of education in science, while he sharply criti-
cized programs in the humanities and religion, which were considered old-
fashioned and dogmatic. Petrini is one of the secondary school teachers that 
Lövheim (2006) refers to when he writes about a “new enlightenment” in the 
early 20th century.137 

Ragnar Nyhlén (1892-1949) is the most anonymous of the authors. Apart 
from the fact that he had a PhD in mathematics and that he wrote textbooks, 
                               
136 Wigforss & Roman (1951), Wigforss (1952) 
137 See for instance Sjöstrand (1965) and Lövheim (2006) 
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I have not been able to track any more data about him. Actually, I am not 
certain about if he worked as a secondary school teacher or not. 

Taken together, all the authors of the texts that constitute the main sources 
for my investigation of the debate on geometry instruction belonged to some 
kind of elite. They were all textbook authors; some were active in teacher 
training; some were editors of journals; others had central positions with the 
school authorities. Consequently, the arguments on geometry instruction that 
I describe in this thesis are the arguments of an elite.  

This fact leads to some consequences as I want to consider the relevance 
of the arguments. On one hand, we can infer that the arguments were rele-
vant to the common teachers in the sense that the arguments were conveyed 
by important persons; it was not ordinary school teachers who were express-
ing their thoughts about geometry instruction. On the other hand, we cannot 
infer that the debate took aim at all the daily matters of the common teach-
ers. Thus, when we consider the professional debate as an incentive for ac-
tions and a source of arguments, it might be that the debate treated parts of 
geometry instruction. 

Curricula and time plans, 1905-1962 
The mathematics courses in Folkskolan 
During the period 1905-1962, Folkskolan had three different curricula.138 

1900 => 1919 => 1955 =>1962 

Before the curriculum for Folkskolan in 1919, geometry and arithmetic con-
stituted two separate school subjects. However, after 1919, the course was 
still denoted geometry and arithmetic, not mathematics.139 Throughout the 
period 1905-1962, the core of the mathematics courses contained the four 
basic rules of arithmetic applied to whole numbers and fractions. Various 
practical applications were also a part of the courses. The courses in geome-

                               
138 The following description of the courses and the directives regarding teaching methods are 
based on the curricula of 1900, 1919 and 1955. In the list of references, they are denoted 
Normalplan för undervisningen i folkskolor och små skolor af kongl. maj:t i nåder godkänd 
den 7 december 1900, Kungl. Skolöverstyrelsen (1919) and Kungl. Skolöverstyrelsen 
(1955b). 
139 In 1897, arithmetic and geometry constituted two separate subjects, and students got 
grades in both. In 1919, arithmetic and geometry became one subject; however, the subject 
was still denoted arithmetic and geometry and there were specific textbooks in arithmetic and 
geometry for some years. During the 1930’s, textbooks that comprised both arithmetic and 
geometry began to occur.  
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try comprised drawings, descriptions, and measuring of straight lines and 
elementary plane surfaces and solids.140  

The 1900 curriculum is brief in comparison to the later ones. It mainly es-
tablished what should be taught, when it should be taught, and to what ex-
tent. No specific goals for mathematics instruction were explicated. In 1919, 
the main goal of Folkskolan’s courses in mathematics was to prepare the 
students to use mathematics in daily life matters. 

The purpose of the instruction in arithmetic and geometry in Folkskolan is to 
convey to the children, in accordance with their age and progress, knowledge 
of and skills in calculations with special regards for the needs of daily life 
along with some familiarity with the constructions, descriptions, and calcula-
tions of geometrical magnitudes.141 

A second goal concerned moral and economic matters; the applied exercises 
should be chosen in such a way that they supported good economic morals in 
personal and household matters.142 

In 1955, the explicit main goal did not contain a formulation about the 
needs of daily life. This time, the main goal was to cultivate the students 
with respect to orderliness of thought, thoroughness, and persistence.143 
However, in the description of the courses, the practical applications were 
still important.144 Moreover, economic morality and edification were also 
mentioned as a goal.145   

Throughout years 1905-1962, the geometry course began in the fourth 
grade. The students were supposed to learn how to draw, describe and meas-

                               
140 Normalplan för undervisningen i folkskolor och små skolor af kongl. maj:t i nåder god-
känd den 7 december 1900, pp. 28-34; Kungl. Folkskoleöverstyrelsen (1919), pp. 59-69 
Kungl. Skolöverstyrelsen (1955b), pp. 123-124. In comparison with the curriculum of 1900, 
the new curriculum of 1919 was more extensive and it contained more detailed descriptions of 
goals, teaching methods and courses. The curriculum of 1919 remained in force until 1955, 
but even though new editions were published during this time; those parts that concerned 
what I denote as content, methodology and goals of school mathematics were not altered. (See 
for instance the editions published in 1922, 1924, 1950 and 1952.)  
141 Kungl. Skolöverstyrelsen (1919), p. 58: ”Undervisningen i räkning och geometri i folksko-
lan har till uppgift att bibringa barnen en efter deras ålder och utveckling avpassad insikt och 
färdighet i räkning med särskild hänsyn till vad som erfordras i det dagliga livet ävensom 
någon förtrogenhet med geometriska storheters uppritning, beskrivning och beräkning.” 
142 ”Vid val av sakuppgifter bör tillses, att även sådana uppgifter medtagas, som äro ägnade 
att fästa lärjungarnas uppmärksamhet på hemmets ekonomi samt på sparsamhetems betydelse 
för den enskilde och för hemmet. Likaledes bör uppfostran till sparsamhet vara en viktig 
synpunkt vid uppgörandet av planen för undervisningen i bokföring.” (Kungl. Skolöverstyrel-
sen (1919), p. 69) 
143 Kungl. Skolöverstyrelsen (1955b), p. 123 
144 Kungl. Skolöverstyrelsen (1955b), pp. 123-124 
145 Kungl. Skolöverstyrelsen (1955b), p. 127 
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ure “geometrical magnitudes”. The advised content of the geometry courses 
in the curriculum of 1919 was the following:146 

Grade 4 The comprehension and application of measures of surfaces and 
spaces and the calculation of surfaces of squares and other rectangles along 
with spaces of the cube and other right-angled solids. 

Grade 5 A geometry course comprising lines, angles, parallelograms and tri-
angles along with those solids, which have the aforementioned surfaces as 
bases and perpendicular sides against the bases, and essentially the construc-
tion, the description and the measurement of the aforesaid magnitudes along 
with basic practical calculations. 

Grade 6 A geometry course, comprising, aside of the previously treated sur-
faces and solids, those quadrilaterals yet not treated along with other poly-
gons and circles together with those solids that have the aforementioned sur-
faces as bases and perpendicular sides against the bases, and essentially the 
constructions, the description and the measurement of the aforesaid magni-
tudes along with basic practical calculations. 

Grade 7 A geometry course, comprising, besides previously treated magni-
tudes, something about ellipses, pyramids, cones and spheres and essentially 
the construction, the description and the measurement of the aforesaid magni-
tudes along with basic practical calculations. Simple exercises in making 
graphs. Simple field measuring exercises. 

In comparison to the 1900 curriculum , this description is a bit more com-
prehensive, but the basic items are the same.147 The new curriculum in 1955 
did not bring any major changes regarding the mathematics courses of the 
first seven years, but as Folkskolan was extended to eight or nine years, 
square roots and basic first degree equations with one unknown together 
with applications were added. The geometry courses in grades eight and nine 
contained the new items congruency and uniformity, but also some basic 
proofs, along with the older items.148  

In the curricula of 1919 and 1955 it was established that åskådlighet, i.e. 
spatial intuition, was the leading methodological principle in connection to 
mathematics instruction.149 In both curricula, the actual directives about ås-
kådlighet were positioned in the very first paragraph of the so-called “guide-
lines” in the chapter on mathematics teaching. Here is the formulation of 
1919, which was quite similar to the one of 1955.150  

                               
146 Kungl. Skolöverstyrelsen (1919), p. 60. This content is kept through the succeeding edi-
tions of the curriculum of 1919. See for instance the editions of 1922, 1924, 1950 and 1952. 
147 Normalplan för undervisningen i folkskolor och små skolor af kongl. maj:t i nåder god-
känd den 7 december 1900, pp. 33-34 
148 Kungl. Skolöverstyrelsen (1955b), pp. 123-124 
149 Kungl. Skolöverstyrelsen (1919), p. 67, Kungl. Skolöverstyrelsen (1955b), p. 124 
150 Kungl. Skolöverstyrelsen (1955b), p. 124 
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1.  Visualizability [~åskådlighet] should as far as possible be aimed at during 
[mathematics] instruction. Measuring and weighing should for instance be 
considered the foundation for the calculation of measures and weights, and 
the operations of calculation should, when possible, be made visual [åskå-
dliggöras ~ to make something concrete] by counting objects.151 

This methodological principle was explained more in detail by Fritz Wig-
forss, for one. His standpoints I this matter are treated in a subsequent chap-
ter. 

In the methodological directives on geometry instruction, there were no 
explicit formulations regarding spatial intuition. Still, we may conclude that 
all the recommendations about drawings and constructions are related to 
some idea about spatial intuition. This is the formulation in the 1919 curricu-
lum, where the importance of students making measurements and construc-
tions were underscored. 

During geometry teaching, the students ought to, as often as possible, execute 
the necessary measurements. In connection with calculations of surfaces[152], 
the students should draw the geometrical magnitude referred to and in the 
drawing indicate the given measures. Furthermore, geometry teaching should 
be supported by modeling, clipping and folding. … 

In connection to geometry teaching, the students ought to execute the simple 
geometrical constructions along with surface spreading, which are most use-
ful in practical life. 

During field measuring exercises, right lines could be drawn by a string or 
they could be staked out by sticks. Right angles could be set off by using a 
cross table.153 

On the other hand, elementary geometry instruction without drawings and 
constructions is hard to imagine; these formulations about geometry instruc-

                               
151 Kungl. Skolöverstyrelsen (1919), p. 67: ”1. Vid undervisningen bör så långt som möjligt 
åskådlighet eftersträvas. Så t. ex. böra mätningar och vägningar läggas till grund för räkning-
en med mått- och viktsorter, och räkneoperationerna böra, då så lämpligen kan ske, åskådlig-
göras genom räkning med föremål.” [The italics is done by the original author.]  
152 Notice that the expression “calculations of surfaces” was used and not “calculations of 
areas”. The former expression was by far the more common in the textbooks in Folkskolan 
and Realskolan during the period 1905-1965. The word “area” was quite uncommon. 
153 Kungl. Skolöverstyrelsen (1919), p. 69: ”Vid undervisningen i geometri böra lärjungarna 
själva i så stor utsträckning som möjligt få verkställa behövliga mätningar. Vid beräkningar 
av ytor böra de tillhållas att före uträkningen upprita de ifrågavarande geometriska storheten 
och på ritningen utsätta de givna måtten. Undervisningen i geometri bör dessutom stödjas av 
modellering, utklippning och vikning. ... I samband med undervisningen i geometri böra 
lärjungarna få utföra de enkla geometriska konstruktionerna samt ytutberedningar, som vanli-
gast komma till användning inom det praktiska livet. Vid fältmätningsövningarna kunna 
lämpligen räta linjer uppdragas med snöre eller utstakas med stavar samt räta vinklar avsättas 
med tillhjälp av korstavla.” The italics are original.  
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tion may therefore not be a result of any specific pedagogical considerations 
regarding spatial intuition. 

In the 1900 curriculum, spatial intuition did not have the same prominent 
position; the word was used on only twice in connection to the methodologi-
cal advice when geometrical concepts, but also different measures, were to 
be introduced.154 We find similar formulations in the 1889 curriculum, but 
not in that of 1878.155  

An interesting detail is that girls in Folkskolan could choose not to study 
geometry until 1919. By that curriculum, all parts of the mathematics course 
became compulsory for both girls and boys. In the curricula of 1899 and 
1900, geometry instruction was voluntary for girls and compulsory for boys, 
whereas arithmetic was compulsory for both girls and boys.156 Before the 
curriculum of 1889, girls were not allowed to study geometry at all.157  

The mathematics courses in Realskolan 
In this description of the mathematics courses in Realskolan, Realskolan 
comprises six grades. This is not completely accurate since Realskolan was 
shortened in 1928. From this year, there were one four- and one five-year 
program in Realskolan, see the diagram N in chapter N on the Swedish 
school system. This reduction was done from below, i.e. the first and second 
grades were dropped. In 1950, a three-year program was added as well.  

Originally, Realskolan comprised one type of program and it contained 
one program of courses in mathematics. By the school year 1934/35, three 
practical programs were added and the original program was termed the 
general program, i.e. allmän linje. The students could choose the practical 
programs for the last two years in Realskolan.158 To my knowledge, all pro-
grams had the same courses in mathematics and the exam test were the 
same.159 It was not until 1951 that each program was given specific courses 
in mathematics. From 1951, the students could choose between a shorter and 

                               
154 Normalplan för undervisningen i folkskolor och små skolor af kongl. maj:t i nåder god-
känd den 7 december 1900, pp. 32, 34 
155 Normalplan för undervisningen i folkskolor och småskolor, utgifven år 1889, p. 29; Nor-
malplan för undervisningen i folkskolor och småskolor, utgifven år 1878, p. 21-23 
156 Normalplan för undervisningen i folkskolor och småskolor, utgifven år 1889, p. 29; Nor-
malplan för undervisningen i folkskolor och små skolor af kongl. maj:t i nåder godkänd den 7 
december 1900, p. 34 
157 Normalplan för undervisningen i folkskolor och småskolor, utgifven år 1878, pp. 63-64.  
158 Examensutredningen (1961), p. 11 
159 I have not found any explicit official directives that establish that the different programs 
contained the same courses in mathematics. However, according to the school regulations of 
1945, all practical programs in Realskolan should provide the same admission to higher 
schools as the common program plus specialized vocational educations in technology, 
trade/economics and domestics. (SFS 1945:581, pp. 1199, 1228) Moreover, some school 
subjects in the practical programs, e.g. German, English, and French, contained special appli-
cations, but not mathematics. (SFS 1945:581, pp. 1199) 
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a longer course in mathematics. In the subsequent description, the longer 
course in the common program is considered.    

Realskolan got its very first curriculum in 1905. Until 1962, when 
Grundskolan was introduced, three more curricula were introduced.160   

1905 => 1928 => 1933 => 1955 (=> 1962) 

Throughout the period 1905-1962, mathematics was one school subject, and 
students received one grade in mathematics, i.e. there was no distinction 
between geometry and arithmetic/algebra. However, there were specific 
textbooks for arithmetic, algebra and geometry throughout the period. 

Between 1905 and 1962, the goals of mathematics instruction stated in 
the curricula were quite similar, but there were also some differences. In all 
curricula, it was stipulated that mathematics instruction in Realskolan was 
supposed to convey knowledge and skills relevant to daily life. In 1905 and 
1955, this goal was complemented with a goal about some general civic 
education. No specific applications in science or technology were mentioned 
in any curriculum. This is the formulation of 1905. 

The task of mathematics instruction in Realskolan is to communicate knowl-
edge of and skills in arithmetic to the students, especially applied tasks from 
the daily life, along with knowledge of the elementary concepts and methods 
of geometry, to such extent that it corresponds to the requirements of a gen-
eral civic education; at the same time, it shall constitute a sufficient prepara-
tion for those educational institutions that are linked to Realskolan.161 

Following this quote, one may even get the impression that applications in 
daily life were linked primarily to arithmetic, whereas studies in geometry, 
together with arithmetic, was associated with the promotion of a general 
civic education.  

In the curricula of 1928 and 1933 the formulation regarding general civic 
education was dropped in the paragraph on the goals of the mathematics 
courses.162 However, the expression ‘general civic education’ was still a part 
in one of the initial paragraphs on the goals of Realskolan.163 In the curricula 
of 1928 and 1933, the sole goal was to provide knowledge suitable for the 
                               
160 The following description of the mathematics courses are based on SFS 1906:10; Ber-
gqvist, B. J:son; Wallin, Harald (1928); Grimlund & Wallin (1933) and Skolöverstyrelsen 
(1955a) 
161 SFS 1906:10, p. 25: ”Undervisningen i matematik i realskolan har till uppgift att bibringa 
lärjungarna insikt och färdighet i räkning särskildt med tillämpning på uppgifter från det 
dagliga lifvet äfvensom förtrogenhet med geometriens elementära begrepp och metoder, allt 
till en omfattning, som motsvarar fordringarna på allmän medborgerlig bildning och på sam-
ma gång utgör en tillräcklig förberedelse för de fortbildningsanstalter, som ansluta sig till 
realskolan.” 
162 Grimlund & Wallin (1939), p. 298. Bergqvist, B. J:son; Wallin, Harald (1928), p. 226 
163 Grimlund & Wallin (1933), p. 2 
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so-called “practical life”. Whether or not geometry was included in this aim 
is not perfectly clear. This is the formulation of 1933, which was almost 
identical to the formulation of 1928.164 

The aim of geometry instruction in Realskolan is to convey to the students, 
on the basis of what is acquired in Folkskolan, insights and skills in arithme-
tic, especially applications from daily life, and to make them familiar with the 
elementary concepts and methods of geometry. 165 

In new curriculum of 1955, geometry instruction was given an explicit aim 
again.  

The systematic instruction in geometry shall not only convey a certain 
amount of knowledge to the students. Its purpose is also to give them, in ac-
cordance with their age, a suitable conception of the logical edifice of geome-
try. The proof methods of geometry shall also contribute to the fostering of 
the students’ orderliness of thought and intellectual honesty and develop their 
ability to express their thoughts in clear and concise manner.166 

As we can see in this passage, the goal of geometry instruction was not only 
to convey knowledge in geometry, nor just skill in logic; the formulations 
about intellectual honesty establish that geometry instruction was supposed 
to provide a kind of moral schooling as well. Even though we cannot find 
similar passages in the previous curricula, these directives were by no means 
novel in 1955. In teacher journals and textbooks, similar arguments had been 
conveyed at least since the beginning of the 20th century. I describe these 
arguments in a chapter below.  

As I see it, the goals regarding training in reasoning and intellectual hon-
esty were a more detailed version of the formulations about providing a gen-
eral civic education, which occurred in the curricula of 1905, 1928 and 1933. 
Both reasoning and intellectual honesty are skills and morals that are not 
bound to specific school subjects, professions or academic disciplines; in 
that sense, they are general. Moreover, these goals take aim at the student’s 
future capacity to engage in intellectual discussions, i.e. his or hers future 
role as a citizen. 

                               
164 Bergqvist, B. J:son; Wallin, Harald (1928), p. 226 
165 Grimlund & Wallin (1933),  p. 298: ”Undervisningen i matematik i realskolan har till 
uppgift att, på grundval av vad som inhämtats i folkskolan, bibringa lärjungarna insikt och 
färdighet i räkning, särskilt med tillämpning på uppgifter ur det praktiska livet, samt att göra 
dem förtrogna med geometrins elementära begrepp och metoder.” 
166 Skolöverstyrelsen (1955a), p. 118: ”Den systematiska geometriundervisningen skall icke 
blott bibringa lärjungarna ett visst kunskapsmått. Den har också till ändamål att ge dem en 
efter deras åldersstadium avpassad uppfattning om geometrins logiska uppbyggnad. Den 
geometriska bevisföringen skall också bidraga till lärjungarnas fostran till tankereda och 
intellektuella ärlighet och utveckla deras förmåga att klart och koncist uttrycka sina tankar.” 
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The prescribed content of the mathematics courses in Realskolan was 
very much the same throughout the period 1905-1962. The mathematics 
courses comprised three topics: arithmetic, algebra, and geometry. None of 
the courses included analysis/calculus, trigonometry or statistics. 

During the first three years in Realskolan, the courses were dedicated to 
arithmetic. The courses comprised whole numbers, decimal numbers, and 
fractions together with percentage. A specific item in the curricula was men-
tal arithmetic. At the end of the third year, the students were introduced to 
parentheses and the concepts term and factor.  

In the fourth year, the students were introduced to equations and algebra. 
At first, the students were supposed to work with simple equations of the 
following type: 

Solve the following equations (through arithmetical reasoning): 

1. a) 2x+3.27=8.53;  b) 3x+6.21=16.23;  c) 5x+19.1=2.6 …167 

Arithmetical reasoning is not defined in the curricula, but by later passages it 
is becomes clear that it is something different than applying algebraic rules 
and methods.  

As the equations became more complicated, the students should be intro-
duced to algebraic rules and methods, which comprised reduction of terms, 
elimination of parentheses, insertion of factors within parentheses, multipli-
cation of simple polynomials and factorization of simple polynomials, in this 
case second degree polynomials. During the fourth and the fifth year, the 
students worked with linear equations with one unknown. In the sixth year, 
the students should learn how to solve systems of two linear equations with 
two unknowns. However, the courses did not include second-degree equa-
tions. Neither did the courses in Realskolan comprise polynomial division 
and factorization of more complicated polynomials. Here are a couple of 
equations from the final exams of Realskolan in 1925 and 1946.168 

 

 
1060

47

2
1
5
1

6
1
4
1

�
�

�
�

�
�
�

xx
x

x
x

 (1925) 

 

0
2133

194
33

7
22 �

��
�

�
�

�
� xx

x
x

x
x

 (1946) 

                               
167 Rendahl, Wahlström & Frank (1940), p. 5 
168 Stenbäck & Sundbäck (1962), pp. 10, 13. The first equation was the first task out of eight 
at the final exam in mathematics of 1925. The second equation was the first task out of eight 
at the final exam in mathematics of 1946. In 1925, 3785 students took the test in mathematics, 
2268 of these tried to solve the equation and 1759 passed. In 1946, 8239 students took the test 
in mathematics, 7033 of these tried to solve the equation and 6118 passed. 
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The so-called “applied tasks from daily life” comprised exercises within the 
following topics: rule of three, interest rates, discounts, mean values, book-
keeping, mixtures, and uniform motions. Arithmetic and algebra was also 
used to compute lengths, areas and volumes. In connection with these com-
putations of lengths, areas, and volumes, the students were introduced to 
irrational numbers such as � and square roots.  

Geometry instruction began in the third year of Realskolan. During this 
year, the students should be introduced to the basic concepts: straight line, 
plane surface, angles, different types of straight lined surfaces, circles, sec-
tors, etc. However, the approach was supposed to be less formal, i.e. the 
concepts should not be introduced by means of explicit definitions and theo-
rems; instead the students should learn about the geometrical concepts as 
they worked with various applied exercises. The exercises were supposed to 
involve some kind of measuring, e.g. an investigation of a diagram by means 
of a ruler or a protractor. In addition, larger objects such as the classroom or 
a field could be investigated. In connection with these measuring exercises, 
the students were supposed to be acquainted with the concepts of proportion 
and uniformity as well. During the third year, the students should also be 
introduced to basic concepts in stereometry, e.g. prism, cylinder, pyramid, 
cone, and sphere.  

Thus, the first geometry courses in Realskolan were quite similar to the 
geometry courses in Folkskolan.  

In the fourth year, the students were introduced to axiomatic geometry, 
but the students were to continue to learn about measuring and applied ge-
ometry. Axiomatic geometry was, in its main parts, taught in the fourth and 
fifth year. The reason why axiomatic geometry was not taught in the final 
sixth year was probably that most of the students that went on to the gymna-
sium did so after the fifth year. 

 If we consider the curricula, they do not reveal much about the content of 
the courses in axiomatics. A much better source in this respect is the text-
books. Throughout the period 1905-1962, they contain a core of theorems 
that in large parts correspond to the theorems in books I and III of Euclid’s 
Elements together with some theorems on uniformity and proportions. If we 
consider the geometry exercises at final exams in mathematics and the re-
quirements for their solutions, we can confine this core even more. I return 
to this issue in the next part of the dissertation.  

The mathematics courses in Flickskolan 
To give a general description of the mathematics courses in the girls’ schools 
is not as easy as describing the mathematics courses in Folkskolan and Real-
skolan. The basic problem is that Flickskolan got its first national curriculum 
in 1928. Before that, there were no national directives regarding goals, 
teaching methods and courses. 
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Nevertheless, the mathematics courses at Flickskolan in 1928 were sup-
posed to be a continuation of the courses in Folkskolan. The students could 
enter Flickskolan after the fourth year in Folkskolan, and they entered a 5-
year practical program or a 7-year theoretical program. In the theoretical 
program the courses covered more topics than Folkskolan; during the third 
and fourth year, the students should study first-degree equations; during the 
sixth year, they should also study systems of first-degree equations. More-
over, during the sixth and seventh year they where introduced to theorems 
and constructions in geometry.169 I suppose that these courses were based on 
the axiomatic method, but this is not stated in the curriculum. However, it 
appears as if the teachers at Flickskolan used the geometry textbooks in-
tended for Realskolan. The reason for this is that there were, at least to my 
knowledge, no particular geometry textbooks for Flickskolan. The two text-
books intended for Flickskolan that I have found were also intended for Re-
alskolan, which implies great similarities between the courses.170 Yet, the 
geometry courses at Flickskolan cannot have been as extensive as the 
courses in Realskolan, since mathematics was given less time during the last 
two years at Flickskolan. (See the tables below.)  

Time plans, 1905-1962 
The tables below describe the number of mathematics lessons prescribed by 
the curricula during the period 1905 – 1965. Each lesson comprised 45 min-
utes and the numbers within the parentheses indicate the total number of 
lessons per week. In some cases, the total number of lessons could be larger 
if the students chose to study an additional subject. In these tables, the stan-
dard numbers are displayed. 

                               
169 SFS 1928:426, p. 1477; SFS 1950:61, p. 90 
170 One book was written by Anna Rönström and published in 1894. It was reprinted only in 
1909. The other text book was written by Olof Josephson. Between 1900 and 1953, it was 
reprinted 15 times. 
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Table 2.  
grade 1 2 3 4 5 6 7 8 9 10 11

Folkskolan
kl 1 kl 2 kl 3 kl 4 kl 5 kl 6 kl 7 kl 8 kl 9

1919 3(24) 4(26) 4(28) 5(30) 5(30) 5(30) 5(30)
1955 4(24) 4(26) 5(32) 5(34) 5(36) 5(36) 3(36) 3(36) 3(36)

Realskolan
kl 1(6) kl 2(6) kl 3(6) kl 4(6) kl 5(6) kl 6(6)

1905 4(27) 5(29) 5(30) 5(30) 4(30) 5(30)

kl 1(5) kl 2(5) kl 3(5) kl 4(5) kl 5(5)
1927 5(37) 5,5(37,5) 4(39) 5(39,5) 5(37)
1933 4(36) 5(38) 4(38) 3(36) 4(34)
1955 4 5 3 4 4

kl 1(4) kl 2(4) kl 3(4) kl 3(4)
1927 5,5(37,5) 4(39) 4(39,5) 5(38)
1933 5(38) 4(39) 3(37) 4(34)
1955 4 3 4 4

Flickskolan
kl 1 kl 2 kl 3 kl 4 kl 5 kl 6 kl 7

theoretical program 1927 4(33,5) 5(34,5) 3(33,5) 4(35) 4(34,5) 3(~35) 3(~35)
practical program 1927 4(33,5) 5(34,5) 3(33,5) 4(35) 4(34,5)
theoretical program 1950 4(33) 5(33) 3(34,5) 3(35) 3(34,5) 3(~35) 3(~35)
practical program 1950 4(33) 5(33) 3(34,5) 3(35) 3(34,5)

Grundskolan
åk 1 åk 2 åk 3 åk 4 åk 5 åk 6 åk 7 åk 8 åk 9

1962 4(20) 4(24) 5(30) 5(34) 5(35) 5(35) 4(35) 4(35) 5[3](35)
1969 4(20) 4(24) 4(30) 5(34) 5(35) 5(35) 4(35) 4(35) 4(35)

 
The bracketed 3 in åk (=grade) 9, Lgr 62, denote the number of mathematics lessons 
at the practical programs. The 5 indicates the number of mathematics lessons at the 
program that prepared the students for further studies at the Gymnasiet.  

If we consider the table for Folkskolan, the conditions for geometry instruc-
tion were changed due to the reform in 1955. Folkskolan was extended by 
one, and later on two, years between 1933 and 1955. As the total number of 
mathematics lessons was increased, new topics in basic algebra and geome-
try were added to the courses. 

In Realskolan, the new time plan of 1933 brought considerable changes 
for geometry instruction. If we consider the five last years of Realskolan, i.e. 
grades 5 to 9, we can observe drastic changes of the number of mathematics 
lessons per week. The changes become even more drastic when we consider 
the last three years – it was during these three years, the axiomatic-deductive 
method was to be taught. The time for mathematics lessons changed in the 
following way with each reform. 
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Table 3.  
reform last 5 last 3
1927 2% 0%
1933 -18% -21%
1955 0% 0%
1962 13% 15%
1969 -5% -8%  

 
The new curriculum of 1933 caused major protests, not just among the 
mathematics teachers in Realskolan. The number of lessons in mathematics 
and science subjects was reduced in both Realskolan and Gymnasiet. Be-
cause of this reform, a great number of teachers formed a national society for 
education in science and mathematics – Föreningen för undervisning i 
matematik och naturvetenskap – and its explicit aim was to create a public 
opinion for the restoration of mathematics and science as school subjects.171 
Actually, it appears as if their efforts were successful; in 1936, an extended 
mathematics course in Gymnasiet was created. In Realskolan, however, the 
time plan was not changed. Nor was a special course in mathematics intro-
duced in Realskolan.172 

The curricula and time plans did not stipulate how much time should be 
spent on arithmetic, algebra, geometry and various applications. An investi-
gation done by Dahllöf (1960) during the late 1950’s gives us an indication 
about the proportions. In Folkskolan, the teachers spent 15-20 percent of the 
lessons in mathematics on geometry. In Realskolan, the proportions were the 
following:173 

Table 4.  

Year in Realskolan Proportions 

3d last year 20-25% 
2nd last year ~35% 
Last year 45-50% 

According to Dahllöf (1960), the applied geometry exercises became more 
common than the theoretical ones during the last year in Realskolan.174 

                               
171 Lindholm (1991) 
172 Grimlund & Wallin (1939), pp. 322-324 
173 Dahllöf (1960), p. 441. The investigation of the distribution of arithmetic, algebra, geome-
try and applications is based on questionnaires from 1,597 teachers: Folkskola (228), Real-
skola (303), Praktisk Realskola (167), Flickskola (217), Enhetsskola (505), The schools in 
Stockholm in 1947 (177). [Dahllöf (1960), p. 67]   
174 Dahllöf (1960), p. 441 
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The debate on geometry instruction in Folkskolan 
According to the yearbooks of the teacher education institutes for Folksko-
lan, the most commonly used literature on mathematics instruction was Ar-
betssättet i folkskolan (Working methods of Folkskolan); a treatise that also 
included essays on mathematics instruction.175 Among these essays, there 
was one on geometry instruction.176 Along with Arbetssättet i folkskolan, two 
treatises that focused on mathematics instruction in particular were used at 
the institutes: they were Matematikundervisningen i folkskolan: metodiska 
råd (Mathematics teaching in Folkskolan: methodological advice) by Gun-
nar Setterberg, first published in 1916, and Den grundläggande matemati-
kundervisningen (Elementary mathematics education) by Frits Wigforss, 
first published in 1925.177 Geometry instruction was also treated in these 
works.  

The works of Setterberg and Wigforss were, however, not an instant suc-
cess. During the 1920’s, 1930’s and early 1940’s only two out of twelve 
institutes used their books. Not surprisingly, Setterberg and Wigforss worked 
as lecturers at these two institutes. However, during the 1940’s, Wigforss’ 
treatise became more popular and was included in teachers’ training at other 
institutes as well. In the 1940’s and 1950’s five more editions of Wigforss’ 
treatise were published.178 

All the treatises mentioned above shared some similarities regarding goals 
and methodological issues. The authors base their accounts on a critique of 
rote learning. The common opinion was that learning by rote is counterpro-
ductive; the students just attain knowledge about facts, but not an ability to 
use these facts in different situations. Moreover, the authors believed that the 
students considered learning by rote as meaningless. In order to avoid this 
kind of learning, the teachers should arouse the students’ interest for mathe-
matics and make the students attain a more profound understanding of 
mathematics. In order to achieve this goal, the teaching methods should be 
founded on spatial intuition and self-activity. An important aspect is that a 
teaching method based on spatial intuition and visualisations was not just a 
matter of showing illustrations every now and then. On the contrary, illustra-
tions, teaching material and experimental exercises were to be inserted at 
specific moments during a teaching sequence. 

                               
175 See Folkskoleseminariernas årsböcker. Arbetssättet i folkskolan contains one chapter for 
each school subject and each chapter comprises various essays on teaching methods. The 
essays on mathematics instructions was written by L. G. Sjöholm, N. E. Persson, Nils Alsén, 
Carl Gustaf Hellsten, Elsa Eriksson, Sven Wikberg, C. N. Hedegård, David H. Nissar, C. 
Lundahl and Edv. Steiner.  
176 This essay was written by C. Lundahl and Edv. Steiner. 
177 Setterberg also published a treatise named Åskådlig matematikundervisning (Concrete 
mathematics teaching or Mathematics teaching by spatial intuition), Setterberg (1913). 
178 Not till Folkskoleseminariernas årsböcker 
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In the following sections, I give a more detailed description of Wigforss’ 
writings on these matters. In comparison, Setterberg and the authors of Ar-
betssättet i Folkskolan very much shared Wigforss’ enthusiasm for ideas on 
mathematics instruction and spatial intuition. Moreover, their ideas on how 
teaching ought to be arranged were quite similar. The unique aspect of Wig-
forss was that he explained these ideas in more detail. He also submitted 
goals of mathematics instruction that was not mentioned in the curricula. 
Therefore, I have chosen to focus on the arguments of Wigforss in this the-
sis. 

Wigforss on mathematics instruction 
In comparison to the 1919 curriculum and the writings on the purpose of 
mathematics instruction, Wigforss gave expression to a somewhat different 
view. Along with the promotion of knowledge and skills suitable for daily 
life matters, Wigforss considered mathematics teaching to be a good oppor-
tunity to influence the students’ intellects and spirits. This new purpose was 
saliently stated in the very first paragraph of the commentaries: 

§ 1. The aim of mathematics teaching as well of the other school subjects 
may be said to be the communication of certain valuable knowledge to the 
children, but also to influence their mental faculties in a good way. … The 
possibilities of mathematics education to influence the intellects and spirits of 
the students must be considered significant. Hardly any of the other school 
subjects are more suitable to require the same clarity and orderliness of 
thought. Therefore, it must be considered as an essential task of mathematics 
teaching to educate the students with respect to logic. 179 

We find no formulations like this in the curriculum of 1919 or in the curricu-
lum of 1955. However, in the preliminary curricula that preceded the coming 
Grundskolan, we find similar formulations.180 Such preliminary curricula 
were produced in the first years of the 1950’s and by the mid 1950’s. They 
were also tested in numerous schools, the so-called Enhetsskolor throughout 
this decade. It is by no means surprising that these new goals appear in these 
curricula; Wigforss was very much involved in authoring them.      

                               
179 Wigforss (1925), p. 5: ”§ 1. Målet för undervisningen i matematik såväl som i skolans 
andra ämnen kan ju sägas vara dels att bibringa barnen vissa värdefulla kunskaper och dels att 
påverka deras själskrafter i god riktning. ... Matematikundervisningens möjligheter att påver-
ka elevernas tanke- och viljeliv måste anses betydande. Knappast något av skolans andra 
ämnen torde så bra kunna erfordra tankens reda och klarhet. Det måste därför betraktas som 
en väsentlig uppgift för matematikundervisningen att verka bildande på eleverna i logiskt 
avseende.” We find a similar formulation in the fourth edition printed in 1952. [Wigforss 
(1952, pp. 5-6] 
180 Wigforss & Roman (1951) p. 5; Wigforss (1952), p. 5; Kungl. Skolöverstyrelsen (1956), p. 
77. Noteworthy is that the formulation about training in logic is dropped in Kungl. Skolöver-
styrelsen (1956). 



 68 

In order to achieve these goals, mathematics instruction had to be based 
on spatial intuition and student activity; these were the basic components of 
Wigforss’ methodology. 

Intellectual training and visualizability 
The argumentation regarding spatial intuition and shaping of the intellect 
was built around a critique of rote learning.  

The drumming of abstract doctrines is – if not preceded by clear observation 
– useless. 181 

The children should not learn the concepts of surface, line, point by some ab-
stract definitions, ...182 

Still, Wigforss did not disapprove of mechanical reiterations, but if these are 
not preceded by a thorough understanding of concepts and techniques, they 
are thoughtless and therefore useless. Moreover, he considered mere me-
chanical repetition of rules in arithmetic training as a “meaningless game 
with numbers”.183 It was in connection to the efforts of developing the stu-
dents’ understanding of mathematics that Wigforss tied spatial intuition to 
intellectual training.  

To Wigforss, proper intellectual training required that the students under-
stand the content of the courses.  

Since the training of thought is a main purpose of mathematics teaching, the 
understanding of the content must be energetically aspired to, …184 

This understanding was achieved if the teaching was made concrete and 
possible to observe. Åskådlig was the Swedish term used by Wigforss. It 
may be translated by observable or visualizable.  
                               
181 Wigforss (1925), p. 114: ”Ett inpluggande av abstrakta lärosatser är – om ingen klar 
åskådning ligger bakom – värdelöst.” 
182 Wigforss (1925), p. 115: ”Begreppen yta, linje, punkt skola barnen ej lära in genom några 
abstrakta definitioner, ...” 
183 Wigforss (1925), p. 6: ” Visserligen är mekanisk säkerhet i denna teknik [räkneoperatio-
ner] nödvändig, men denna mekanisering kan och bör – åtminstone i väsentlig mån – komma 
som ett resultat av en ofta företagen upprepning av den tankegång, som ligger bakom tekni-
ken. Alltså först begripande, sedan mekanisk färdighet så småningom. ... En stor vinning, som 
arbetet att förstå sättet för räkneoperationernas utförande för med sig, är att innebörden i dessa 
operationer därigenom belyses och blir förstådd av barnen, medan blott det mekaniska utfö-
randet ur denna synpunkt är värdelöst, ja, skadligt, då tanklösheten lätt kan bli så stor, att 
såväl elever som lärare i det myckna sifferräknandet glömma att tänka efter, om själva inne-
börden i de räkneoperationer, som mekaniskt utföras, är begripen. ... Med ett sådant under-
visningssätt börjar man betänkligt närma sig den gräns, där räkningen från att vara ett betydel-
sefullt arbete övergår till att bliva en meningslös lek med siffror.” The italics are Wigforss’s. 
184 Wigforss (1925), p. 5: “Då tankens skolning är en huvuduppgift för undervisningen i ma-
tematik, följer därur, att begripandet av kunskapsstoffet energiskt måste eftersträvas, ...” 
Wigforss uses the word ”kunskapsstoffet”, which I understand as content as I have defined it. 
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In order to make the students understand and profit from the course, the 
teaching must be visualizable [~åskådlig].185   

By visualizing, Wigforss meant: 

Visualizing is not just seeing, but having a clear, concrete conception, and the 
most visual [~åskådliga] conception is reached when the children are active, 
when they carry out the actions that visualize [åskådliggör] the operations of 
calculations themselves, instead of just remaining in their seats and watching 
the teacher carry out the actions. 

The outer obvservation is however a means to reach the inner, to attain a 
visualization in our imagination, to attain a visual [åskådlig] way of think-
ing.186 

If we follow Wigforss’ argumentation in the first part of the quote, visualiz-
ing is not the same thing as simply looking at a picture; visualizing means 
that you perceive something particular in an illustration. Moreover, having a 
visualizable or concrete conception of something is the same thing as a hav-
ing a clear conception, according to Wigforss.  

If we recall Wigforss’ writing on clarity and orderliness of thought in 
connection to the goals of mathematics instruction, this is what he meant by 
clarity. Hence, clarity is not primarily linked to logic or an idea about using 
precise language. 

In the last part of the quote, we observe that there are two types of visual-
izing: outer and inner. My interpretation is that this is two modes of thinking, 
where the outer mode is a preparation for the inner mode. For instance, the 
illustration of the essential aspects of a proposition about something facili-
tates a more profound understanding of this proposition. Eventually, the 
illustration is not needed in order to understand this proposition, which 
means that the student has reached the inner mode of thinking.     

Even though we may argue about the meaning of this quote, I think that it 
shows how Wigforss saw the aim of intellectual training as closely linked to 
his ideas on spatial intuition. Moreover, in comparison to the formulations in 
the curriculum, he gave the notion of spatial intuition in connection to 
mathematics instruction a more profound meaning. Mathematics instruction 
in Folkskolan should not only provide skills in calculations that were useful 
in every day life; it should also constitute a form of intellectual training. 

                               
185 Wigforss (1925), p. 8: ”För att barnen skola kunna förstå och tillgodogöra sig kursen, 
måste undervisningen vara åskådlig.” The italic is made by Wigforss. 
186 Wigforss (1925), p. 8: ”Men åskåda betyder ej blott se, utan klart, konkret uppfatta, och 
den allra bästa åskådliga uppfattningen få barnen, när de själva få vara verksamma, när de 
själva få utföra de handlingar, som skola åskådliggöra räkneoperationerna, istället för att bara 
sitta och se på, när läraren utför dem. Den yttre åskådningen är emellertid ett medel att kom-
ma fram till den inre, till en åskådning i fantasien, till det åskådliga tänkandet.” The italics are 
Wigforss’s. 
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Visualizability and self-activity 
As I mentioned above, Wigforss as well as Setterberg and the authors of 
Arbetssättet i folkskolan required that effective learning should be based on 
spatial intuition together with self-activity. To Wigforss, spatial intuition and 
self-activity were very much linked together. If we return to the quote above, 
Wigforss pointed out that the students’ activity is crucial. Observing an illus-
tration and perceiving something is an act where the student is intellectually 
active; she must think and draw conclusions on her own. Wigforss made the 
following distinction between passive and active thinking. 

The difference between a more active and a more passive mode of thinking is 
as noticeable as between observing and doing. Both modes are valuable, but 
in connection to school work there is seldom much room for active thinking. 
Therefore, studies in mathematics should, to some extent, constitute a coun-
terweight in this respect, since the teacher can easily arrange the teaching in 
such a way that passive reception does not become the main feature.187   

Another advantage of teaching based on self-activity was that it captured the 
students’ interest. Wigforss makes the following statement regarding suc-
cessful teaching and students’ interests.   

The method that takes up the activity of the children will also become the 
most interesting, which is a thing of the greatest importance. Teaching that 
does not successfully capture the children’s interest must be considered a 
failure in its essential parts.188 

This was exactly what a teaching method based on spatial intuition provided. 
An important aspect of Wigforss’ view of spatial intuition and self-

activity as teaching principles is that it contained an order for how teaching 
ought to be arranged: in order to explain a concept, a proposition or a 
method properly, you must begin with an illustration and the students’ active 
observations. In this way, the students reach a clear and intuitive understand-
ing of it. At best, the students will discover the novelty by themselves. To let 
the students make discoveries is what Wigforss calls a “heuristic method”. 
Moreover, not until the student had gained an intuitive conception should he 
or she pass on to routine exercises.189 

                               
187 Wigforss (1925), p. 8-9: ”Skillnaden mellan ett mera aktivt och mera passivt tänkande är 
lika markerad som mellan bara se på och själv göra. Båda formerna äro värdefulla, men i 
skolarbetet får ofta det aktiva tänkandet för litet utrymme. Matematikstudierna borde härvid-
lag i viss mån bilda en motvikt, då läraren lätt nog kan lägga undervisningen så, att det passi-
va mottagandet ej blir huvudsaken.” 
188 Wigforss (1925), p. 9: “Den metod, som tar barnens aktivitet mest i anspråk, blir ock den 
intressantaste, en sak av allra största betydelse. Den undervisning, som ej lyckas fånga bar-
nens intresse, måste anses vara i väsentlig mån misslyckad.” 
189 Wigforss (1925), p. 9 
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By a comparison to the textbooks in Folkskolan during the period 1905-
1962, we can observe that this routine was applied very often. I return to this 
issue in the next part of this thesis. 

Wigforss on geometry instruction  
According to the curriculum of 1919, the aim of geometry teaching was to 
convey basic knowledge about constructions, descriptions and calculations 
of geometrical magnitudes.190 Next to this aim, there was a clear directive 
that the students should be prepared to apply this knowledge in daily life. In 
contrast, Wigforss added some other aims for geometry instruction that were 
not related to daily life.191  
1. Geometry instruction in Folkskolan should convey certain basic knowl-

edge that constitutes a necessary fundament for later education in several 
subjects.  

2. Geometry instruction was supposed to train the students’ space percep-
tion. Unfortunately, Wigforss did not make any further comments on the 
expression “conception of space”.  

Wigforss didnot, however, downgrade the value of promoting skills that are 
useful in daily life. 

Regarding methodological issues, Wigforss mentioned only one leading 
principle apart from basic practical advice about not using too many compli-
cated words and formulas, and that was visualizability, i.e. åskådlighet.192 
Yet, Wigforss did not give a more thorough account on the concept of visu-
alizability in connection to geometry teaching; there were no extra general 
directives regarding how teachers should arrange their geometry lessons. He 
just states that the teaching should rest on spatial intuition and provides an 
illuminating example.  

However, a good result is, as always, dependent on how the teaching is car-
ried out. The drumming of abstract doctrines is – if not preceded by clear ob-
servation – useless. What is the value of a child knowing that the size of a tri-
angle is found by the multiplication of the base and half the height, if they at 
the same time are completely baffled when they face the task of finding the 
size of a triangular surface given in reality?193 

                               
190 Upf 19, p. 58: ”Undervisningen i räkning och geometri i folkskolan har till uppgift att 
bibringa barnen en efter deras ålder och utveckling avpassad insikt och färdighet i räkning 
med särskild hänsyn till vad som erfordras i det dagliga livet ävensom någon förtrogenhet 
med geometriska storheters uppritning, beskrivning och beräkning.” 
191 Wigforss (1925), p. 114 
192 Wigforss (1925), pp. 114-5 
193 Wigforss (1925), p. 114: ”Men ett gott resultat är naturligtvis som alltid beroende av hur 
undervisningen bedrives. Ett inpluggande av abstrakta lärosatser är – om ingen klar åskådning 
ligger bakom – värdelöst. Vad värde kan det ligga i att barnen veta, att en triangels storlek 
finnes genom multiplikation av basen med halva höjden, och om de kunna uträkna sådana 
exempel i läroboken, där basens och höjdens längder finnas angivna, om de samtidigt stå 
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In this quote, Wigforss also suggests a particular routine for teaching and 
learning: before the students are introduced to area and volume formulas and 
exercises, they should have gained an ability to investigate geometrical ob-
jects on their own. We can also observe this routine in Wigforss’ directives 
regarding how the lessons ought to be carried out. A majority of the length-
ier directives includes a routine where the students first work through a set of 
experimental exercises; after that they are introduced to formulas and com-
putational exercises. Take for instance the computation of the area of a cyl-
inder. 

A suitable exercise is to draw the surface net of a cylinder and accomplish 
such a thing [a cylinder]. Through this it becomes clear how the surface of 
the cylinder is computed.194 

Moreover, these directives were often accompanied by references to spatial 
intuition and ideas such as clear conception, self-activity, observation, and 
discovery.195  

In comparison to the geometry textbooks of the period 1905-1962, the 
methodological suggestions made by Wigforss, but also the other authors of 
teaching literature on mathematics, appear to have been influential. The rou-
tine regarding the introduction concepts and formulas appears in more or less 
every textbook in some form. Nevertheless, we can hardly link the origin of 
this routine to Wigforss; textbooks that were designed according to this rou-
tine appeared well before Wigforss work on mathematics instruction. There-
fore, I think it is more appropriate to consider Wigforss a person who 
summed up what the authors of geometry textbooks were already doing. His 
unique contribution was rather that he added a more theoretical flavour by 
linking this type of textbook design to ideas about visualizability and outer 
and inner visualizations. 

The debate about geometry instruction in Realskolan    
Axiomatic geometry and the training of reasoning 
If we consider the curriculum for Realskolan, we find no formulations about 
geometry instruction and training in reasoning. In some of the contemporary 
geometry textbooks, though, the authors stated that geometry instruction, 

                                                                                                                             
alldeles rådlösa inför uppgiften att taga reda på storleken av en i verkligheten given triangels 
yta?” 
194 Wigforss (1925), p. 125: ” En lämplig arbetsuppgift är att rita ytnätet till en cylinder och 
förfärdiga en sådan. Härigenom blir det klart, hur cylinderns mantelyta skall beräknas.” 
195 Wigforss (1925), pp. 115-127. I discuss Wigforss’ particular directives in connection to the 
investigation of the geometry textbooks. 
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apart from providing knowledge in geometry, should train the students in 
logic and reasoning.196  

In Elementa there was no real debate about geometry and the training of 
reasoning in the sense that someone disputed this idea. Even those debaters 
who had different opinions on other issues related to geometry instruction 
agreed about this idea. Those who treated the issue more in detail were 
Petrini, Hedström, and Olson.197  

Olson’s thinking on geometry instruction and training in reasoning con-
tains two basic components. One is that geometry is the best subject for the 
training of formal reasoning. The other is that geometry instruction promotes 
a general intellectual ability to treat concepts and language in a formal man-
ner, which leads to a general ability to perform sound reasoning.  Olson 
summarizes his view on geometry instruction and training in reasoning in the 
following way:  

… the science of logic obtains its complete application on a relatively small 
content, and since, from the students’ point of view, it treats easily demon-
strable and tangible realities, there are always pleasing opportunities to dis-
play absurdities for the undeveloped mind, which may lead him to incorrect 
conclusions. The formation of concepts and the art of defining, judging, and 
deducing and making logical systems are cognitive operations, to which the 
students are accustomed through studies in geometry. The students become 
accustomed to using clear and distinct concepts; they get an awareness of the 
importance of using correct expressions: not to say too much or too little. 
Thus, these requirements [on geometry instruction] sustain the fostering of 
the students’ feeling for language and their ability to use language in a correct 
manner.198            

Here we should note that, in the first sentence, Olson stressed that geometry, 
due to its limited and concrete content, is the ultimate subject to train stu-
dents in reasoning. In doing so he pointed out a unique feature that distin-
guished geometry from other school subjects.  

Hedström and Petrini, on the other hand, were not as explicit as Olson 
about why geometry was the most suitable school subject for training rea-

                               
196 See for instance Sjöstedt (1936), p. 8; Vinell (1907), p. 6; Olson (1940), p. V 
197 Actually, Petrini did not convey his idea about geometry and training in logic and reason-
ing in Elementa. This particular subject was treated in a periodical intended for teachers in 
Folkskolan, Folkskollärarnas tidning. Folkskollärarnas tidning (1921), is. 46, pp. 647-649. 
198 Olson (1926/27), p. 14: ”Den logiska vetenskapen får här sin så gott som fullständiga 
tillämpning på ett relativt litet sakinnehåll, och emedan det rör sig om för lärjungarna lätt 
påvisbara, påtagliga realiteter, finns det ständigt bekvämt tillfälle att praktiskt påvisa för det 
logiskt outvecklade sinnet orimligheter, till vilka hans tankefel leda honom. Begreppsbild-
ningen och definierandet, omdömesbildningen och slutledningen samt den logiska system-
bildningen äro tankeoperationer, med vilka lärjungarna genom geometristudiet bli förtrogna. 
Lärjungarna vänjas att röra sig med klara och tydliga begrepp, får känsla för betydelsen av att 
uttrycka sig korrekt: att varken säga för mycket eller för litet. Fordringarna härpå bidra såle-
des till att fostra lärjungarnas språkkänsla och deras förmåga av korrekt språkbehandling” 
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soning. Instead, they argued that geometry instruction promoted a critical 
mind in the sense that the students became aware of and confident about 
their own reasoning. Hedström wrote: 

His imagination and power of initiative ought to be trained. He should then, 
by making observations and drawing conclusions, reach a certain degree of 
independent opinions and conceptions. We should foster our students not 
only to be self-critical, but also to trust themselves.199 

Petrini argued that mathematics education, just like grammar in classical 
languages, radicalized humans; it made them think in an efficient manner. 
As a contrast he mentioned the “spineless” studies in history and literature. 

It is the incoherent rote learning of the humanities and first and foremost the 
spineless studies in history and literature that turns the mind away from ac-
tual reality and its laws. Mathematics and science make thought accustomed 
to: this is how it  m u s t  be; the humanities and its lack of necessity often 
end up in: this is as good as the other.200  

Even though Petrini wrote about reasoning and mathematics education in 
general, it is hard to believe that he should have excluded geometry in this 
discussion. In his articles in Elementa, he pointed out that Euclid’s Elements 
is the ideal textbook since it is complete with respect to logic.201 

On the other hand, you cannot find one single logical error in Euclid; his sys-
tem is founded on the most complete logical distinctness in every detail.202 

Also Olson argued that geometry instruction should imbue stuents with a 
critical attitude towards reasoning and language. 

The tendency to generalize is one of many human vices and it has, as we 
know, caused much misery on our earth. In mathematics, one has many con-
venient opportunities to show how far afield this may lead us. If one asks a 
boy, in how many points two circles can dissect each other, he answers with-

                               
199 Hedström (1919), pp. 196-197: ”Hans fantasi- och initiativförmåga bör uppövas. Han skall 
genom att iakttaga och draga slutsatser skaffa sig en i någon mån självständig åsikt och upp-
fattning. Vi skola uppfostra våra elever ej endast till självkritik utan också till självtilllit.” 
200 Folkskollärarnas tidning (1921), iss. 46, p. 648: ”Det är den sammanhangslösa humanis-
tiska minneskunskapen och främst den ryggradslösa historie- och litteraturläsningen, som 
vänder sinnet bort från den faktiska värkligeheten och dess lagar. Matematik och naturveten-
skap vänja tanken vid ett: så  m å s t e  det vara, humaniora med dess frånvaro av nödvändig-
het mynna ofta ut i ett: det är lika bra det ena som det andra.” 
201 Petrini (1918), p. 194  
Petrini (1924/25), p. 134 
202 Petrini (1924/25), p. 130: ”Däremot kan man hos Euklides själv inte upptäcka en enda 
logisk felaktighet, utan är hans system uppbyggt med den mest fulländade logiska skärpa på 
varenda punkt.”; p. 134: ”Såvitt jag kan se, finns det ingen möjlighet att rubba på det grund-
läggande Euklidiska systemet det ringaste grand utan att samtidigt pruta på strängheten.” 
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out blinking: two! How do you know? Well, it is obvious; one sees it as one 
makes a drawing: 

 

It is said that it is bad to sow the weed of doubt in the souls of innocent chil-
dren, but, when it comes to altering their naïve beliefs in their outer senses, I 
think it is justified. Ask him then to draw two circles (preferably of equal 
size, to avoid the case of tangents) where the centers are rather close in com-
parison with the length of the radiuses; spatial intuition then shows that the 
circles have not only two points but whole arcs in common. This entail, at the 
very least, that the answer can be discussed. Clearly, such discussions will 
arouse the students’ interest in having the case proven.203 

An important aspect of the argumentation of Olson, Hedström, and Petrini is 
that they assigned a general usefulness to geometry instruction. The ability 
to reason effectively, to think critically, and to treat concepts and language 
carefully is indeed useful in other areas as well, not just mathematics. Actu-
ally, in comparison, explicit arguments where geometry instruction in Real-
skolan was supposed to provide valuable knowledge in mathematics were 
quite rare. Of course, that idea may have been taken for granted.  

So, was this intellectual training a goal intended for the most theoretically 
gifted students aiming for the Gymnasium and later on the university? Or did 
this goal also include those students who entered vocational programs or 
working life after Realskolan? I would say that this goal included all the 
students in Realskolan, at least until the early 1950’s. I have two arguments 
for this claim.  
1. Until 1951, there was only one course program in mathematics; hence, 

there was no differentiation where the students could chose between dif-
ficult or less difficult courses. Even when practical programs were intro-
duced in 1934, there was only one course program in mathematics.204  

                               
203 Olson (1926/27b), p. 78: ”Att gärna vilja generalisera är nu en av människans många 
odygder och har som bekant ställt till mycket elände på vår jord. Inom matematiken har man 
många bekväma tillfällen att visa, hur galet dylikt kan leda. Om man frågar en pojke, i hur 
många punkter två cirklar kunna skära varandra, svarar han utan att blinka: två! Hur vet du 
det? Jo, det är ju självklart, det ser man ju bara man ritar: ...   Det sägs, att det är av ondo att så 
tvivels ogräs i oskyldiga barnasjälar, men då det gäller att rubba deras kolartro på de yttre 
sinnena, tror jag att det kan vara berättigat. Bed honom då att rita två cirklar (helst lika stora, 
så att tangentfallet undvikes) med medelpunkterna rätt nära varandra i förhållande till radier-
nas längder; åskådningen visar ju då, att de båda cirklarna ej hava blott två punkter utan hela 
bågar gemensamma. Och i och med det är ju frågan i alla händelser diskutabel. Det är ju klart, 
att genom sådana diskussioner väckes lärjungarnas intresse för att få saken bevisad.” 
204 See the chapter above on the curricula for Realskolan. 
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2. Between 1917 and 1962, the final exams in mathematics included ge-
ometry exercises where the students were supposed to motivate some 
propositions. Until 1950, more than 80 percent of the students that en-
tered the exam process took the final exams in mathematics.205 

Petrini even argued that the axiomatic approach made the teaching easier for 
the less gifted students, since it brought clarity and order.206   

Another aspect of the debates in Elementa on geometry instruction is the 
type of arguments the debaters did not use. Here we can note that arguments 
about the preservation of some kind of cultural heritage were not used in the 
debate. Even a man like Petrini, who vigorously defended Euclid’s Elements 
and considered it the most ideal textbook, did not use this type of argumenta-
tion. His basic argument was that geometry instruction should train the indi-
vidual student in reasoning. 

If we consider the debate during the 1950’s that preceded the new curricu-
lum for Grundskolan and the cancellation of the axiomatic approach to 
school geometry, the idea about training in rational reasoning was the main 
argument of those who wanted to keep the axiomatic method in some way or 
another.207  

The debate about textbooks and teaching methods, Part I 
The debate in Elementa on geometry instruction comprises two episodes, 
1917-1927 and 1938-1939. During the first episode, there are eight articles 
that are linked to each other; during the second episode, there are seven. 
Apart from these, there are some minor articles on geometry instruction, but 
they are not directly linked to the other articles. 

The first episode was initiated by Petrini as he defended Euclid’s Ele-
ments as the ideal textbook in two articles, criticizing contemporary text-
books and teaching methods. His basic criticism was that textbooks that de-
viated from the disposition of the Elements were less rigorous. Moreover, 
Petrini argued that no pedagogical benefits were achieved by lowering the 
level of rigor. Petrini got reactions from Meyer, Hedström, and Olson; all 
three disputed that Euclid’s Elements was the ideal textbook for elementary 
instruction. Moreover, they claimed the students were not able to grasp the 
rigor Petrini was aiming at.    

                               
205 See the chapter below on the final exams in mathematics. 
206 Petrini (1918), p. 203 
207 Ullemar (1957), p. 4; Sjöstedt (1961), p. 115. These articles did not appear in Elementa. 
Actually, no longer articles related to the debate on geometry instruction appeared in Ele-
menta during the 1950’s.  Ullemar submitted his article in the periodical Tidskrift för skol-
matematik (Journal of School Mathematics) and Sjöstedt in Pedagogisk debatt (Pedagogical 
Debate). In these journals other articles on geometry instruction were submitted as well.  
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Petrini’s defense of Euclid’s Elements 
Petrini considered Euclid’s Elements to be the ideal geometry textbook from 
a logical point of view.  

… you cannot find one single logical error in Euclid; his system is on each 
point founded on the most complete logical distinctness. 208  

This standpoint is a bit surprising. A person with a PhD in mathematics and 
an interest in geometry cannot have been unaware of the criticisms about 
Euclid’s tacit assumptions and the following logical inconsistencies. Petrini 
even devoted a whole article in Elements to a discussion on modern geome-
try and Hilbert’s Grundlagen der Geometrie.209 Moreover, on no occasion 
did he dispute Hilbert’s or anyone else’s criticisms of Euclid. Therefore, 
when he writes that “you cannot find one single logical error in Euclid”, he 
may have meant that each explicit justification of a statement is done in a 
logically correct manner. 

Regarding the works of Hilbert, Petrini claimed that the Grundla-
gen…could be considered an endpoint of research on the fundaments of ge-
ometry.210 Moreover, in Petrini’s view, Hilbert’s axioms were purely mathe-
matical and independent of experiences of physical objects; in this way, Hil-
bert had shown that it was possible to think mathematically about geometry 
without any experience of physical objects. 

[The axioms are] completely independent of empirically found properties of 
physical bodies. Hence, he has shown that a geometry is mathematically pos-
sible without any experience of solid bodies.211  

Owing to its abstract character, Petrini found Hilbert’s axiomatic system to 
be inappropriate for elementary instruction in Realskolan. 

Due to its abstract formulations, the axiomatic system of Hilbert seems to be 
less appropriate as a foundation of geometry for beginners, even for the 
fourth class in Realskolan some of his axioms appear altogether unnecessary 
to the beginner, others, such as III:6, too far-fetched. Here, as in all other 
cases, one ought to build on what is known and one ought to make the first 

                               
208 Petrini (1924/25), p. 130: ”Däremot kan man hos Euklides själv inte upptäcka en enda 
logisk felaktighet, utan är hans system uppbyggt med den mest fulländade logiska skärpa på 
varenda punkt.” 
209 Petrini (1917), pp. 197-207  
210 Petrini (1917), p. 197 
211 Petrini (1917), pp. 205-206: ”[Axiomen är] alldeles oberoende av rent empiriskt funna 
egenskaper hos de fysiska kropparna. Härmed har han i sak uppvisat, att en geometri är ma-
tematiskt tänkbar utan erfarenhet av fasta kroppar.” 
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basic instruction as visual [~åskådlig] as possible without compromising ex-
actness.212 

In Petrini’s view, the value of Hilbert’s work had more of an ideological 
character: teachers and textbook authors should be inspired by its rigor and 
try to make Euclid’s account even more rigorous.  

On the contrary, it is the present generation’s obligation to make the Euclid-
ean account, if possible, even more exact. This is nowadays feasible due to 
the scientific investigations in the area of geometrical axioms of the last cen-
tury. These investigations have been brought to a certain completion by Hil-
bert’s award-winning work >>Grundlagen der Geometrie>>. In this work, the 
guidelines are also drawn for all future accounts on the elements of Geometry 
that aspire to be exact.213 

Still, it was not possible to modify the outline of Euclid’s Elements. 

As far as I can see, there is no possibility of changing the fundamental 
Euclidean system the slightest without reducing the rigorousness at the same 
time.214 

Regarding the contemporary textbooks, Petrini identified four types of flaws 
that were linked to alterations in the Euclidean system.215 
1. If a theorem is proved by means of the fifth postulate, i.e. the parallel 

postulate, the theorem becomes less general than if the fifth postulate is 
not used. If the fifth postulate is not used, the theorem applies for 
Euclidean geometry as well as non-Euclidean geometries. Thus, proofs 
where the fifth postulate is included becomes less general. Moreover, the 
teachers lose a good opportunity to discuss theorems that apply to non-
Euclidean geometries. 

                               
212 Petrini (1917), p. 206: ”På grund av sin abstrakta formulering synes det Hilbertska axiom-
systemet för mången vara föga ägnat att bygga geometrin på för nybörjare eller ens i realsko-
lans fjärde klass, helst somliga av hans axiom förefalla nybörjaren alldeles onödiga, andra 
såsom III:6 alltför långsökta. Här som alltid eljest bör man bygga på vad som är känt och göra 
den första grundläggande undervisningen så åskådlig som möjligt utan att inskränka på ex-
aktheten.” The italics are done by Petrini. 
213 Petrini (1918), p. 195: ”Tvärtom är det den nuvarande generationens skyldighet att om 
möjligt göra den Euklideiska framställningen ännu mer exakt. Detta är numera utförbart på 
grund av det sista århundradets vetenskapliga forskningar på de geometriska axiomens områ-
de. Dessa undersökningar ha bragts till en viss avslutning genom Hilberts prisbelönade arbete 
>>Grundlagen der Geometrie>>. Med detta arbete äro också riktlinjerna dragna för alla fram-
tida framställningar av geometrins element med anspråk på exakthet.” 
214 Petrini (1924/25), p. 134: ”Såvitt jag kan se, finns det ingen möjlighet att rubba på det 
grundläggande Euklidiska systemet det ringaste grand utan att samtidigt pruta på stränghe-
ten.” 
215 Petrini (1924/25), pp. 131-133 
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2. Theorems proved by Euclid are presented as axioms, as for instance the 
proposition that the sum of two sides in a triangle is greater than the 
third. According to Petrini, as few axioms as possible should be used. 

3. The construction theorems serve as proofs of existence in the Elements. 
This makes it almost impossible to alter the order of the theorems. 

4. Translations or movements of figures in the plane should not be used. 
Here, Petrini suggested that theorem I.4 should be considered an 
axiom.216 

We can compare this list to how Asperén and Olson designed their text-
books, which is discussed in Part D of this dissertation. Their works seem to 
be the subject of Petrini’s criticisms. At the time of Petrini’s articles, As-
perén’s geometry textbook was the most popular one in Sweden. 

Nevertheless, Petrini’s defence of Euclid Elements as a textbook was not 
only based on purely logical considerations. He also saw pedagogical advan-
tages in a course that followed the Elements – the rigorous approach was 
pedagogical in it self.  

As I have mentioned earlier on, the students in Realskolan began their 
studies in geometry with a course in measuring and computing lengths, ar-
eas, and volumes. During this course, propositions were established by em-
pirical investigations, and there was no axiomatic approach. This course also 
included practical applications. Like all the other debaters, Petrini found this 
course necessary since it was an opportunity for the students to get ac-
quainted with the basic geometrical concepts. A crucial issue in the debate in 
Elementa was how the introduction of the axiomatic method ought to be 
carried out. Petrini’s idea was that the students should be introduced to the 
axiomatic method without any further ado.  

With beginning in the fourth grade and without any scruples, [one should] in-
troduce a scientifically exact teaching method. On the other hand, any under-
estimation of the disciples’ intellectual abilities will lead to wobbly drivel, 
which will have an impeding effect on their spiritual development towards 
standing on their own feet. One should therefore reject all attempts to make 
geometry easier to understand by means of bargaining away the rigor of 
Euclid’s account.217 

The less gifted students in particular would benefit from such an arrange-
ment. If the basic concepts and methods were examined in a vague fashion, 

                               
216 Most likely, Petrini was here referring to Hilbert’s axiom III:6: If so, the suggestion is a bit 
surprising since Petrini, seven years earlier, considered this axiom too far fetched for the 
students at Realskolan.   
217 Petrini (1918), p. 195; [Man bör] utan skrupler slå in på en vetenskaplig exakt undervis-
ningsmetod från och med den fjärde klassen. Underskattandet av lärjungarnas förståndsmog-
nad leder däremot till ett löst pjoller, som endast verkar hindrande på deras andliga utveckling 
till att stå på egna ben. Man måste sålunda förkasta alla försök att göra geometrin lättfattligare 
genom att pruta av på strängheten i Euklides’ framställning.” 
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these students would get stuck at an early stage; the more gifted students, on 
the other hand, would cope with the vague explanations.218   

What Petrini meant by “bargain away the rigor” is probably related to his 
criticisms of the contemporary textbooks mentioned above. The meaning of 
“wobbly drivel” is however not obvious by his writings. However, the arti-
cles by his adversaries Meyer, Hedström, and Olson provide a good picture 
of the target for Petrini’s criticisms. 

The alternative approach of Meyer, Hedström, and Olson 
In the articles by Meyer, Hedström, and Olson, two issues were treated in 
particular. 1) The transmission from a less formalistic geometry course to a 
much more formalistic course, i.e. the introduction of the axiomatic method. 
2) Euclid’s Elements as a textbook at elementary level.  

“Gentle” transmission as an introduction to axiomatic geometry  
Their basic standpoint was that the transmission had to be done in a gentler 
manner or “continuously” and “mildly” as Hedström put it.219 All three very 
much disputed Petrini’s idea of entering a scientifically exact teaching 
method in what they considered an abrupt manner. Moreover, they consid-
ered Euclid’s Elements to be inappropriate as an elementary textbook, and 
they refuted Petrini’s idea that an exact scientific method would make ge-
ometry instruction more accessible. According to them, the teachers’ task 
was not to introduce science, i.e. the axiomatic method, in its most complete 
form. Instead, the teachers ought to introduce the students to the value of a 
formalistic way of reasoning. In the following sections, their standpoints are 
described more in detail. Let us first consider the notion of so-called “gentle” 
transmission. 

A key point in the argumentation of all three was that the students have to 
understand the importance of the axiomatic method – what is its purpose?220 
If not, a majority of the students would quickly lose interest in geometry and 
formal reasoning. How this ought to be accomplished was treated by Hed-
ström and Olson. Their basic idea was that the students, even after the prac-
tical course in geometry, should be introduced to new theorems by means of 
empirical investigations, e.g. measurements or speculations based on spatial 
intuition. Hence, both Hedström and Olson underscored the importance of 
spatial intuition in connection to the courses in axiomatic geometry.221 At 
best, the students should even discover the theorems on their own. In this 
way, the students would get a better understanding of the meaning of the 
theorems, than if the theorems were established via a proof without any fur-

                               
218 Petrini (1918), p. 203 
219 Hedström (1919), p. 195 
220 Hedström (1919), pp. 195-196; Meyer (1924/25), p. 140; Olson (1926/27a), p. 23 
221 Hedström (1919), pp. 198-200; Olson (1926/27a), pp. 15-16 
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ther explanation. Then, as the teachers confronted the students with ques-
tions about the truths of the theorems, they should realize that the empirical 
methods are defective, e.g. inductive inferences are not perfectly reliable, 
observations and intuitive reasoning may lead wrong, measuring by means 
of a ruler or a protractor is not an exact method, etc.222 Here are two exam-
ples that Olson mentioned, which also are good examples of how he believed 
geometry instruction imparts a critical attitude: 

For instance the theorem on vertical angles. After they have used the protrac-
tor to measure and they have found out that the angles are equal, one may 
draw the diagram on the board and ask the students if it is possible to realize 
the equality between the angles without measuring? An answer one then 
should expect is that it obvious even without measuring. This has to be re-
futed by a counterargument, if someone dares to say that it is obvious that 
they are exactly equal. Is it not thinkable that one of the angles is half a de-
gree greater than the other, without our noticing it, unless one has measured 
carefully? If then someone should object that one cannot rely on careful 
measuring, since it is impossible to detect differences of about 1/10 �, then 
one has to be very satisfied, otherwise one has to guide the students to this re-
flection.223 

The tendency to generalize is one of many human vices and it has, as we 
know, caused much misery on our earth. In mathematics, one has many com-
fortable opportunities to show how wrong the like may lead. If one asks a 
boy, in how many points two circles can dissect each other, he answers with-
out blinking: two! How do you know? Well, it is obvious; one sees it as one 
makes a drawing: 

 

It is said that it is bad to sow the weed of doubt in the souls of innocent chil-
dren, but, when it comes to altering their naïve beliefs in their outer senses, I 
think it is justified. Ask him then to draw two circles (preferably of equal 
size, to avoid the case of tangents) where the centers are rather close in com-

                               
222 Hedström (1919), pp. 199-200; Olson (1926/27a), pp. 77-78 
223 Olson (1926/27a), p. 23: ”T. ex. satsen om vertikalvinklar. Sedan de genom mätningar med 
gradskivan funnit, att de äro lika stora, kan man rita figuren på tavlan och fråga lärjungarna, 
om man inte utan mätning skulle kunna ha insett att vertikalvinklarna äro lika stora? Ett svar, 
som man då har att vänta, är, att det syns utan vidare, utan mätningar. Detta får vederläggas 
med motfrågan, om man vågar säga att det syns, att de äro precis lika stora. Kan det ej tänkas 
att den ena är en halv grad större än den andra, utan att detta märks, såvida man ej gjort en 
noggrann mätning. Om då någon skulle komma på invändingen, att då man ej heller litar på 
mätningen, ty skillnader på t. ex. 1/10 � kunna ej då upptäckas, får man vara mycket nöjd, 
annars får man själv leda lärjungarna till denna reflexion.” 
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parison with the length of the radiuses; spatial intuition then shows that the 
circles have not only two points but whole arcs in common. This entail, at the 
very least, that the answer can be discussed. Clearly, such discussions will 
arouse the students’ interest in having the case proven.224 

In this way, the students were supposed to realize that the significance of 
formal proofs is the most certain method to establish the truth of a theorem. 
Moreover, they should also discover that it sometimes was a more conven-
ient method in comparison with tedious and numerous measurements. 

The idea of a less formal preparatory course and ‘gentle’ transmission 
was by no means a novelty presented by Meyer, Hedström, and Olson in the 
1920’s. For instance, in an official commission on textbooks in 1871, the 
investigators express a wish that geometry instruction should be organized in 
a similar way.225  

Meyer’s critique of Euclid’s Elements as a textbook 
The critique of Euclid’s Elements as an elementary textbook was predomi-
nantly delivered by Meyer. However, Hedström’s and Olson’s ideas about 
“gentle” transmission are in line with this critique in the sense that all three 
underscored that a high level of rigor would not alone facilitate effective 
geometry instruction. Moreover, in his geometry textbook, Olson pointed out 
that he had picked up many ideas from Meyer’s geometry textbook.226 

In Meyer’s argumentation there is a clear distinction between logical and 
pedagogical requirements. According to Meyer, Euclid had cared too much 
about logic and he claimed that the theorems were organized in a certain way 
because of how they were used in later proofs. This hampered the account 
from a mathematical point of view; theorems that treated the same concepts 
or objects were kept apart, for instance the theorems on congruency (I.4, I.8, 
I.26) or theorems on the relationship between a straight line and a circle 
(III.2, III.5-6, III.10-13, III.16-19). This disposition also made it hard for the 
students to get an overview of the subject and to understand geometry.227  

                               
224 Olson (1926/27b), p. 78: ”Att gärna vilja generalisera är nu en av människans många 
odygder och har som bekant ställt till mycket elände på vår jord. Inom matematiken har man 
många bekväma tillfällen att visa, hur galet dylikt kan leda. Om man frågar en pojke, i hur 
många punkter två cirklar kunna skära varandra, svarar han utan att blinka: två! Hur vet du 
det? Jo, det är ju självklart, det ser man ju bara man ritar: ...   Det sägs, att det är av ondo att så 
tvivels ogräs i oskyldiga barnasjälar, men då det gäller att rubba deras kolartro på de yttre 
sinnena, tror jag att det kan vara berättigat. Bed honom då att rita två cirklar (helst lika stora, 
så att tangentfallet undvikes) med medelpunkterna rätt nära varandra i förhållande till radier-
nas längder; åskådningen visar ju då, att de båda cirklarna ej hava blott två punkter utan hela 
bågar gemensamma. Och i och med det är ju frågan i alla händelser diskutabel. Det är ju klart, 
att genom sådana diskussioner väckes lärjungarnas intresse för att få saken bevisad.” 
225 Underdånigt Betänkande afgifvet den 9 Oktober 1871... 
226 Olson (1940), pp. v-vi 
227 Meyer (1924/25), p. 142 
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Another line of criticism that Meyer followed concerned the complexity 
and awkwardness of some of Euclid’s proofs. Meyer argued that the proofs 
should be more in line with the “real grounds” and the “nature” of the theo-
rems. He even implied that a good proof should reveal some sort of causal-
ity.228    

A similar tendency to mess up the proofs is found also in I:5, where he 
[Euclid] unnecessarily extends the sides in order to get inverted congruent 
triangles that do not wholly, but only partially, cover each other. Thereby, the 
theorem will not be taken from its real grounds, that the triangle is inversely 
congruent to itself or, according to another proof, that it can be folded to-
gether, without taking it from superficial grounds that have little to do with 
the nature of the theorem.    

This is a common feature of Euclid, and it constitutes a major error from our 
point of view. On the question: “How come the angles at the base of an isos-
celes triangle are equal?”  nobody can answer that it is because when the 
sides are expanded and the linkage is made crosswise, then two pairs of con-
verted and congruent triangles occur, instead you then have to answer either 
that the diagram is symmetrical (= it can be folded together along a symmetry 
line) or that it can be convertibly laid on itself.229 

Following Meyer’s quote above, he suggested the following movement and 
construction. 

 

  

                               
228 This type of criticisms against the causality of the proofs in Euclid’s Elements is by no 
means typical for the 20th century. Mancosu (1996) describes how mathematicians and phi-
losophers in the 17th century debated whether a proof in classical Euclidean geometry is cas-
ual or not. Then, the underlying issue concerned the scientific status of geometry in relation to 
Aristotle’s policies on science. [Mancosu (1996), pp. 12-24]   
229 Meyer (1924/25), pp. 141-142: ” En snarlik tendens att krångla till bevisen finnes även i 
I:5, där han onödigtvis drager ut sidorna för att få de omvänt kongruenta trianglarna att ej helt, 
utan endast delvis, täcka varandra. Härigenom kommer satsen att ej tagas ur sina verkliga 
grunder, att triangeln är omvänt kongruent med sig själv eller, enligt ett annat bevis, att den 
kan sammanvikas, utan den tages fram ur uppkonstruerade grunder, som föga hava med sat-
sens natur att skaffa. Detta är överhuvudtaget vanligt hos Euklides, och utgör i vår tanke ett 
stort fel hos honom. På frågan: >>Hur kommer det sig till, att vinklarna vid basen i en likbent 
triangel äro lika?>> kan nämligen ingen människa svara att det beror därpå, att om sidorna 
utdragas och sammanbindning sker korsvis, så uppkomma två par omvänt kongruenta triang-
lar, utan man måste svara, antingen att den är en symmetrisk figur (= kan sammanvikas utef-
ter en symmetrilinje) eller att den kan läggas omvänd på sig själv.” 
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In several of the contemporary textbooks, proofs of the theorem on isosceles 
triangles were indeed based on the movement or the construction suggested 
by Meyer. I return to these proofs in the next part of the thesis. 

The proof of Euclid that Meyer was referring to included the following 
diagram where the equal sides AB and AC are equally extended and the lines 
FC and GB are drawn (You find a complete proof in Appendix A.) 

 

   

Meyer also criticized some of Euclid’s definitions, for instance the definition 
of an angle.  

A plane angle is the inclination to one another of two lines in a plane which 
meet one another and do not lie in a straight line.230 

He did not like the concept inclination since it was synonymous with angle. 
Moreover, the definition gave no hint of how the inclination was meas-
ured.231 Instead he suggested a definition based on the concept rotation: 

[An angle] is the rotation that one of the lines needs to undertake, in order to 
coincide with the other.232 

Regarding Petrini’s criticisms of contemporary textbooks, which probably 
included Meyer’s own, Meyer countered them as well. Petrini argued that 
the structure of Euclid’s Elements could not be altered without losing some 
of its rigor, and he explicitly mentioned what he saw as misuses in various 
textbooks; in particular, Petrini criticized the misuse of the parallel postulate, 
the construction theorems, and translations in the plane. Meyer’s opinion on 
these issues was the following. 

� From a pedagogical point of view, he rejected Petrini’s objection 
that the initial theorems become less general if the parallel postu-
late was used earlier on; the question whether or not a theorem was 
valid in the Euclidean as well as non-Euclidean geometries was not 

                               
230 Heath (1956), vol. 1, p. 176 
231 Meyer (1924/25), p. 140 
232 Meyer (1924/25), p. 141: ”[En vinkel är] den vridning, som den ena linjen behöver under-
gå för att sammanfalla med den andra.” 



 85

relevant to students at the elementary level. Thus, the parallel pos-
tulate could be applied earlier on in comparison with Euclid.233 

� Meyer applied a similar argument regarding the issue on construc-
tion theorems as proofs of existence, in this case theorem I.2-3 and 
I.9-12. He argued that the students did not understand arguments 
about existence. Moreover, some of the constructions theorems, 
theorem I.2-3, appeared especially awkward to the students since 
these kinds of constructions were easily done by means of a graded 
ruler in a practical context. Thus, theorems I.2-3 could be omitted 
and one did not have to consider the question of existence.234 

� He did not approve of the idea that Euclid avoided translations of 
triangles and superposition due to the fact that he used it only in 
connection with the proofs of the theorems I.4 and I.8. Since the 
theorems are used in several proofs, translations of triangles and 
superposition are applied indirectly. Thus, translations of triangles 
and superposition could be used without hesitation if one allowed it 
in the proofs of theorems I.4 and I.8.235 

If one considers contemporary textbooks, several authors seem to have 
shared Meyer’s view, as they on several points  did not follow Petrini’s rec-
ommendations, among them Asperén, Olson, and Sjöstedt, who wrote some 
of the most popular geometry textbooks. I discuss their textbooks more in 
detail in Part D of this thesis. Actually, Meyer too authored a geometry text-
book, but it did not gain any popularity.236 

Olson on movements of geometrical objects and the question of putting 
pedagogical requirements before scientific 
In his article on the goals and methods of geometry instruction, Olson em-
phasized the need to make a distinction between school geometry and ge-
ometry at a scientific level. The distinction was based on three issues. 

1) The first issue concerned the use of movements. Here, Olson pointed to 
two scientific traditions: those mathematicians who did not use the concept 
at all in their geometries and those who did. As an example of the latter tra-
dition, Olson mentioned Hilbert and his work “Grundlagen der Geometri”. 
As an example of the former tradition he mentioned Helmholtz, as well as 
Peano. Olson’s main point, though, was that the allowance of movements 
provided pedagogical advantages. In particular, since movements or motions 
appealed to spatial intuition.237 

                               
233 Meyer (1924/25), pp. 143-144 
234 Meyer (1924/25), p. 140 
235 Meyer (1924/25), p. 141 
236 Meyer (1909) 
237 Olson  (1926/27), pp. 74-75 
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And we may argue about the scientific aspects of the matter, but from a 
pedagogical point of view, one has to admit that it is to deprive geometry of 
one of the most primitive concepts of our spatial intuition, when one tries to 
build it up ignoring any kind of movement. Because it is through the different 
positions of items in space that our perspective seeing is trained. In order to 
get a geometrical conception of an item, we want, so to speak, to see it from 
all sides, which takes place via transportations of ourselves our the item. The 
procedure of generation, that a line is formed by the movement of a point or a 
surface by a line, is too fruitful to our geometrical conception and seems so 
natural, that any static geometry appears as something unnatural, something 
that has nothing to do with our mobile world. And since it should be imprac-
ticable to introduce a geometry of Hilbert with its 21 axioms, when it comes 
to the development of the disciples’ minds, there is no reason to stop at half 
way with Euclid, but it would be best if we first, as well as last, let the con-
cept of movement play the most significant role that it deserves from a prac-
tical as well as pedagogical point of view.238 

Thus, Olson legitimized the use of movements in elementary textbooks by 
making references to scientific works of Helmholtz and Peano. Another ar-
gument was that geometries that did not include motions or movements of 
geometrical objects seemed unnatural, and this did not appeal to our spatial 
intuition.    

2) The second issue concerned the introduction of definitions and axioms, 
especially the general axioms on magnitudes.239 According to Olson, you 
should not introduce definitions and axioms together in the beginning of the 
course. They should rather be introduced when needed. Otherwise, the stu-
dents might be confused by the abstract formulations, even though they 
might have an intuitive understanding of the axioms. Moreover, the students 
should in general not be encouraged to refer to the axioms when they carried 
out proofs. Instead the teacher would consider the confidence by which the 
student carried out a proof. In cases where a student was confused, the 
teacher might be forced to consider the axiom in question.240 

                               
238 Olson  (1926/27), pp. 74-75: “Och man må tvista om sakens vetenskapliga sida, ur peda-
gogisk synpunkt måste man medge, att det är att beröva geometrien ett av åskådningens allra 
primitivaste begrepp, då man försöker bygga upp den bortseende från all rörelse. Det är ju 
genom föremålens olika plats i rummet som vårt perspektiviska [sic] seende utbildas. För att 
få en geometrisk uppfattning av ett föremål vilja vi så att säga se det från alla sidor, vilket sker 
genom förflyttning av oss själva eller föremålet. Generationsförfarandet, att en linje bildas 
genom en punkts rörelse eller en yta genom en linjes, är ju också för vår geometriska uppfatt-
ning alltför fruktbringande och tyckes oss så naturligt, att varje stel geometri ger oss intryck 
av något overkligt, som ej har med vår rörliga värld att skaffa. Och när det ändå, då det gäller 
våra lärjungars förståndsutveckling, torde det vara ogörligt att införa en Hilberts geometri 
med sina 21 axiom, finns det intet skäl att med Euklides stanna på halva vägen, utan det torde 
vara bäst att först som sist låta rörelsebegreppet i geometrin spela den väsentligaste roll, den 
ur praktisk och åskådlighetssynpunkt förtjänar att göra.” 
239 Olson used the term ”arithmetical axiom”. In his textbook, though, the first axioms con-
cern magnitudes in general. 
240 Olson (1926/27), pp. 75-76 
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Regarding the axioms that merely concerned geometrical magnitudes, Ol-
son argued that they could be chosen rather arbitrarily. However, you should 
only use the term ‘axiom’ for those propositions that were not possible to 
derive by means of the other axioms. Still, Olson allowed informal axioms 
that could be proved by means of other axioms, but they appeared so self-
evident to our spatial intuition that they did not need proof. The term 
‘axiom’ should be used in connection with these self-evident propositions. In 
his textbook, he inserted the following proposition as a self-evident proposi-
tion that could be proved.241 

The straight line is the shortest way (distance) between two points. 242 

3) Olson also recommended that teachers not review every proof in the text-
book during the lessons. Some theorems could rather be justified by experi-
ments or by references to symmetry. However, he did assume that all proofs 
were available in the textbooks. Moreover, when a teacher decided to prove 
a theorem during class, the proof had to be correct from a logical point of 
view. Olson also warned teachers that reliance on spatial intuition, when 
proofs were omitted, could lead to trouble. As an example he mentioned that 
it is very easy to base such a justification on special cases, e.g. isosceles 
triangles or right triangles.243  

Just like Meyer, Olson underscored the difference between geometry at a 
scientific level and school geometry. An important concept in Olson’s argu-
mentation on scientific and pedagogical requirements was the concept spatial 
intuition. Ultimately, the quality of textbooks and teaching was in many 
respects dependent on whether or not they appealed to spatial intuition. Still, 
he did not put the requirement of spatial intuition against those of science – 
they did not constitute two contradictory components. He even backed up his 
standpoints by saying that mathematicians like Helmholtz and Peano also 
included the concept of motion, or movement. But, when pedagogical and 
scientific requirements conflicted, the former was considered more impor-
tant. 

The debate about textbooks and teaching methods, Part II 
The second episode of the debate on elementary geometry instruction, 1938-
1939, began with an article by Nyhlén where also he criticized contemporary 
geometry textbooks. He chose to examine the textbooks of Olson and Sjöst-
edt in detail. This time, too, the criticisms concerned an alleged lack of rigor; 
however, the faithfulness to Euclid’s Elements was not an issue this time. 

                               
241 Olson (1926/27), p. 76 
242 Olson (1940), p. 4: “Den räta linjen är den kortaste vägen (avståndet) mellan två punkter.” 
243 Olson (1926/27), pp. 76-78 
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Olson and Sjöstedt replied to Nyhlén’s article, and their principal standpoint 
was that it would not be possible to achieve the level of rigor urged by Ny-
hlén in elementary instruction. Olson and Sjöstedt also criticized each other 
as they had different ideas on how geometry textbooks ought to be designed. 
Sjöstedt wanted to follow Euclid as far as possible, while Olson favoured an 
alternative approach. Let us first have a look at Nyhlén’s criticisms. 

Nyhlén’s criticisms of contemporary textbooks 
In a sense, Nyhlén picked up Petrini’s call to teachers and textbook authors 
to make geometry instruction even more rigorous. However, Nyhlén did not 
discuss Euclid at all. The explicit purpose of Nyhlén’s article was to investi-
gate the axioms chosen by Olson and Sjöstedt. He focused on two ques-
tions.244 

� Are the axioms independent of each other? 
� Do the axioms serve as a foundation for the proofs in the so-called 

“congruence theory” and in the so-called “theory of parallels”? 
Of these two questions, the second is the most interesting. Regarding the 
first question, neither Olson nor Sjöstedt disputed Nyhlén’s remarks about 
some axioms being dependent on other axioms, i.e. some of the axioms 
could be proved by means of other axioms. It had not been their intention to 
present independent axioms, and they simply replied that the proofs pro-
posed by Nyhlén were too complicated and that it made no sense to include 
them at the elementary level. The intention of the criticized axioms was to 
function as support for the students. The second question, on the other hand, 
caused a discussion on the axiomatic method and spatial intuition, which 
involved the whole idea of teaching axiomatic geometry.  

Nyhlén’s basic standpoint was the following: 

There should of course not be some state of conflict between our spatial in-
tuitions and deductive Euclidean geometry. Our spatial intuitions should not 
only be employed as the axiomatic system of geometry is laid down, but 
should also be used in the continued construction of the system, partly as a 
mean to discover new theorems, partly to make the proofs more lucid. How-
ever, each new theorem must, by means of formally correct inferences, be de-
rived from the axioms and previously proved theorems without any support 
of spatial intuitions.245 

                               
244 Nyhlén (1938), p.12 
245 Nyhlén (1938), p. 29: ”Det får naturligtvis icke råda något slags motsatsförhållande mellan 
vår rumsåskådning och deduktiv euklidisk geometri. Våra rumsföreställningar skola icke 
endast utnyttjas vid uppställandet av axiomsystemet för geometrin utan användas vid det 
fortsatta uppbyggandet, dels som ett medel till upptäckande av nya satser och dels för att göra 
bevisen mera överskådliga. Varje ny sats måste dock medelst formellt riktiga slutledningar 
kunna härledas ur axiomen och förut bevisade satser utan någon som helst stöd i åskådning-
en.” 
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This requirement of not relying on spatial intuitions was crucial to Nyhlén in 
his argumentation on rigor. He even suggested that if it was impossible to 
present a textbook that met this basic requirement and if proofs had to be 
based on spatial intuition instead, then geometry in Realskolan perhaps 
should be purely empirical and based on spatial intuition altogether.246   

A basic problem with Olson’s and Sjöstedt’s axioms, Nyhlén argued, was 
that they contained concepts that needed an explicit explanation. Moreover, 
some important concepts were not treated in the set of axioms at all. (For 
Olson’s and Sjöstedt’s axioms, see Appendix B and C.) Thus, several proofs 
were useless, as they ultimately were based on spatial intuitions and not the 
conditions established in the axioms. However, Nyhlén did point out that the 
concepts of point, straight line, and plane were to be left undefined.247 The 
most pressing axioms to investigate, according to Nyhlén, concerned the 
concept of translation and the so-called geodetic property of a straight line, 
i.e. the properties of the shortest line between two points, which in plane 
Euclidean geometry is the straight line between two points. Nyhlén’s reason 
to consider these axioms was that they were frequently used in contemporary 
textbooks. If we consider textbooks of Asperén, Meyer, Olson, Sjöstedt and 
others, these axioms were indeed used in several proofs. Sjöstedt even 
claimed that the congruence theorems were a main point of the geometry 
courses.248 (I exemplify how this was done in chapter N.)  

Nyhlén discussed numerous examples, of which I mention only a few. We 
begin with the axiom on the geodetic property of a straight line. Sjöstedt did 
not include such an axiom, but Olson did, as did Asperén and Meyer. Ac-
cording to Nyhlén, Olson had established the following axiom: 

The straight line is the shortest way (distance) between two points.249 

Actually, Olson did not include this proposition among his axioms. The rea-
son for this was that he did not consider it a real axiom since it can be proved 
by means of the other properties of a straight line.250 Nyhlén argued that a 
proposition like that without a proof should be considered an axiom. Since 
Olson had not established the meaning of minimum and distance, it was im-
possible to consider a proof correct when this axiom was included; such 
proofs were rather to be seen as empirical proofs.251 

Nyhlén’s criticisms of Olson’s and Sjöstedt axioms on translations were a 
bit more elaborate.  
                               
246 Nyhlén (1938), p. 34 
247 Nyhlén (1938), pp. 22-3 
248 Sjöstedt (1936), pp. 6-7 
249 Olson (1940), p. 4: “Den räta linjen är den kortaste vägen (avståndet) mellan två punkter.” 
250 Olson (1940), p. 4. Olson did not reveal how this proof should be carried out or if he re-
ferred to some theorem in Euclid’s Elements. He might have intended theorem I.20 of the 
Elements: “In any triangle the sum of any two sides is greater than the remaining one.” 
251 Nyhlén (1938), p. 13 
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Olson’s translation axiom was formulated in the following way: 

Hereby, we assume as self-evident that lines and figures that we imagine to 
be changing position in space; they do not undertake any changes with re-
spect to shape and size whatsoever.252 

Congruency was defined in the following way by Olson: 

Two figures that in all their parts match each other and only differ with re-
spect to position are said to be congruent.253 

According to Nyhlén, there are two possible ways to understand the idea of a 
translation in Olson’s axiom and both of them entailed erroneous conse-
quences.254  
1. We consider the translation to be a real translation of a material object. 

However, since material objects are not treated in deductive geometry, it 
is not allowed to make real translations. Thus, any translation needs to 
be imagined. 

2. However, if the translation is imagined, the properties of the translation 
need to be established by a series of axioms. This was not done by Ol-
son. Nor did Olson stipulate the meaning of the concepts shape and size 
by a definition or the other axioms. Thus, proofs based on Olson’s axiom 
of translations are ultimately based on spatial intuition.  

The critique of Sjöstedt was similar. First of all, Sjöstedt had no explicit 
translation axiom, which of course was a problem to Nyhlén. Another prob-
lem was Sjöstedt’s axiom on congruence: 

Magnitudes that can cover each other are equal in size.255 

Nyhlén pointed out that Sjöstedt actually used this axiom as if he meant “to 
cover by an appropriate imagined translation“, see for instance the next 
quote below, which is taken from one of Sjöstedt’s textbooks. The main 
problem was that the property of “to cover” was not sufficiently explained. 
Thus, the axiom was not possible to use in proofs since it then relied on spa-
tial intuition. 

Another problem with this axiom, Nyhlén argued, was that Sjöstedt used 
real translations – not imagined ones – as for instance in the proof of the first 

                               
252 Olson (1940), p. 15: “Härvid antaga vi såsom självklart, att linjer och figurer, som vi tänka 
oss ändra läge i rymden, ej därvid undergå någon som helst förändring med avseende på form 
och storlek.” 
253 Olson (1940), p. 14: ” Två sådana figurer som till alla delar överensstämma och endast 
skilja sig med avseende på läget, sägas vara kongruenta.” 
254 Nyhlén (1938), pp. 9-10 
255 Sjöstedt (1936), p. 14: ” Storheter, som kunna täcka varandra, äro lika stora.” 
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congruence theorem (SAS).256 As I see it, Nyhlén must have intended a pas-
sage like the following in Sjöstedt’s textbook: 

Place �ABC on �A’B’C’ in such a way that the point A falls on the point A’ 
and the side AB falls along the side A’B’.257 

The wording “place … on” may be interpreted as if a real object is moved. 
Nyhlén also claimed that Sjöstedt must have implicitly assumed a translation 
axiom in connection to this proof and others.258 

Geometrical formations can have the same shape and size but different posi-
tions.259 

Nyhlén had picked up this particular formulation from Sjöstedt’s essay, Ge-
ometrins axiomsystem (The axiomatic system of geometry). In this essay, 
Sjöstedt did point out that “geometry requires the accuracy” of this theo-
rem.260 

A second problem of Sjöstedt’s axioms was that it was impossible to 
come to a conclusion about congruence by means of the axiom on coverage 
and the other axioms. In the proof of the SAS-congruence theorem, it is 
given that two pairs of sides are equal and that the contained angles are 
equal, i.e. AB=A’B’, AC=A’C’ and 	A=	A’. However, since the axioms did 
not establish relations between lines, planes and angles, it is not possible to 
draw any conclusion about a line falling along another line, Nyhlén ar-
gued.261 It appears as if Nyhlén was referring to Hilbert’s axioms of coinci-
dence where the relations between points, straight lines and planes are estab-
lished. Here, I cannot follow Nyhlén completely, but I think he means that 
Sjöstedt’s axioms do not imply that if AB fall on A’B’ and 	A=	A’, then AC 
will fall along A’C’. 

In order to avoid these vague formulations about movements, placing, 
changing position, preservation of size and shape, etc., Nyhlén suggested a 
translation axiom that explicitly established the existence of congruent trian-
gles. He exemplified this suggestion with a proof based on this axiom. Un-
fortunately, Nyhlén did not give a complete and definitive formulation of 
this axiom, but following his example quoted below and an axiom suggested 
by Olson it may have been formulated in the following way: at any position 

                               
256 Nyhlén (1938), p. 27 
257 Sjöstedt (1936), p. 19: ”Lägg �ABC på �A’B’C’, så att punkten A faller på punkten A’ och 
så att sidan AB faller utefter sidan A’B’.” 
258 Nyhlén (1938), pp. 28-9 
259 Sjöstedt (1936/37), p. 14: ”Geometriska bildningar kunna ha samma form och storlek men 
olika läge”.  
260 Sjöstedt (1936/37), p. 14 
261 Nyhlén (1938), pp. 27-8 
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there exists a triangle congruent to the triangle ABC. Nyhlén proved the 
SAS-congruence theorem in the following way. 

Given: AB=DE, AC=DF and 	A=	D. 

Proposition:  �ABC 
 �DEF 

Proof: According to the translation axiom, there exist a triangle congruent to 
ABC, in which DE (=AB) is a side and where it [the triangle] is situated on 
the same side of DE as F. Since 	EDF=	A, one of the sides of the triangle 
falls along DF, and since DF=AC, F is the third corner of the triangle. Thus, 
the triangle DEF and the triangle congruent to �ABC have all their elements 
equal, therefore the original triangles are congruent.262 

The rebuttal from Olson – the educator’s defense 
The main argument of Olson was that Nyhlén’s high demands on rigor were 
out of place in a discussion on textbooks intended for lower secondary level. 
Here, he averred that a clear separation between scientific geometry and 
school geometry was necessary. In the latter practice, the basic priority was 
that pedagogical demands should be considered more important then scien-
tific demands for rigor.263 Regarding the pedagogical demands, Olson re-
ferred to his previous articles in Elementa, published in 1926/27. I describe 
his standpoints in a previous chapter.   

However, Olson did discuss some of the criticism leveled by Nyhlén. Re-
garding the choice of axioms and their interdependency, Olson did not dis-
pute the correctness of Nyhlén’s criticism from a logical point of view. But 
he found the criticism unjustified; an author of an elementary textbook must 
be able to choose some propositions as “evident starting points”, without 
engaging in deeper thoughts on whether they are suitable as foundations for 
a rigorous scientific system or not.264  

Moreover, Olson disputed Nyhlén’s accusation of his proof of the SAS 
congruence theorem being less rigorous because of an inadequate axiom of 
translation. Olson did not consider Nyhlén’s alternative proof above to be 
more rigorous; it was just more abstract and less tangible to the students. The 
axiom used by Olson in his textbook was the following: 

                               
262 Nyhlén (1938), p. 18: “F: AB=DE, AC=DF and 	A=	D. P: �ABC 
 �D  
B: Enligt flyttningsaxiomet existerar en triangel kongruent med ABC, i vilken DE (=AB) är en 
sida och som är belägen på samma sida om DE som F [sic!]. Emedan 	EDF=	A, faller då en 
sida av triangeln utefter DF, och då DF=AC, så är F tredje hörnet i triangeln. Triangeln DEF 
och den med �ABC kongruenta triangeln ha alltså alla element lika, varav följer, att de ur-
sprungliga trianglarna äro kongruenta.” 
263 Olson (1938), p. 94 
264 Olson (1938), p. 94 
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Hereby, we assume as self-evident that lines and figures that we imagine to 
be changing position in space do not undertake any changes with respect to 
shape and size whatsoever.265 

Olson pointed out that this was a more concrete version of the axiom. 

To a given diagram there is a corresponding diagram at an arbitrary position 
in space that accords with the latter with respect to its different elements.266 

Olson’s reason for choosing the former axiom was that it provides a more 
tangible explanation about the existence of a second congruent triangle.267 
The example Olson considered is the proof of the first congruence theorem. 
Here one has to prove that two triangles ABC and DEF are congruent if 
AB=DE and BC=EF and 	B=	E. Olson points out that if we use the latter 
axiom or the axiom suggested by Nyhlén in the proof, we then conclude that 
there exists a third triangle congruent to the triangle ABC lying on the trian-
gle DEF. According to Olson, it is more convenient to say that we move the 
triangle ABC, even though it is not a real translation.268 

Olson did not bother to comment on Nyhlén’s criticisms regarding the 
undefined concepts shape and size. 

An important aspect of Olson’s reply is that he carefully underscored the 
difference between school geometry and geometry at a scientific level; the 
textbook author and the mathematician are doing different things that cannot 
be measured by the same standards. On the basis of this distinction, he 
avoids much of the criticism by saying that Nyhlén had not acknowledged 
that circumstance. We can compare this with Sjöstedt’s rebuttal, which is 
quite different in this respect.       

The rebuttal from Sjöstedt269 – the philosopher’s defense 
Sjöstedt also accentuated the difference between school geometry and scien-
tific geometry. 

                               
265 Olson (1940), p. 15: “Härvid antaga vi såsom självklart, att linjer och figurer, som vi tänka 
oss ändra läge i rymden, ej därvid undergå någon som helst förändring med avseende på form 
och storlek.” 
266 Olson (1938), p. 85: “Mot en given figur svarar på en godtycklig plats i rummet en annan 
figur, som fullt överensstämmer med den förra med avseende på sina olika element.” 
267 Olson (1938), p. 94 
268 Olson (1938), pp. 85, 94 
269 Sjöstedt reply was published in the journal Elementa in 1938. However, the same year he 
also published three consecutive articles in the journal Tidning för Sveriges läroverk. These 
articles were titled “Realskolans geometriundervisning” (~ Geometry instruction in Realsko-
lan). In principle, he conveyed the same standpoints in these articles as in his reply to Nyhlén 
in Elementa.[Sjöstedt (1938b)] 
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When you discuss the basic concepts and the axioms of geometry, as I see it, 
you then have to make a sharp distinction between that which belongs to sci-
entific geometry and that which can fit school geometry.270 

In contrast to Olson’s reply, though, Sjöstedt did not dismiss Nyhlén’s criti-
cism as being too scientific or misplaced in a pedagogical context. Instead, 
he dealt with Nyhlén’s idea of geometry and axiomatic systems.  

According to Sjöstedt, the function of axiomatics could be described in 
the following way: 

To erect a system of propositions that are necessary and sufficient to make 
the system valid for just a certain group (or certain groups) of concepts. 271 

Sjöstedt’s standpoint was that the interpretation of this function was often 
faulty. The error was that it was believed that the axioms determined the 
concepts. This belief was based on the conception that an increasing number 
of axioms ruled out any other concepts. Sjöstedt found this conception un-
reasonable. If you wanted to formulate axioms that are independent, but at 
the same time necessary and sufficient, it was not possible to completely 
separate a certain set of concepts, e.g. point, straight line, and plane, from 
other concepts. In turn, he argued, that particular circumstance often led to 
the misconception that the concepts are undetermined.272 

Sjöstedt argued that the geometrical concepts, in Euclidean geometry, that 
is, are completely determined, but not via axioms, nor via experience. The 
crucial source in this matter was our spatial intuition or our conception of 
space. 

I have now tried to show ... that the geometrical concepts are fully deter-
mined, which they have to be, even though it is not possible to define the ba-
sic concepts of point, straight line, and plane in a proper manner. However, 
you know what is designated when these names are used. Therefore, there 
can be no further amendments to the determination of the concepts in ques-
tion, neither through experience nor through an axiomatic system. In general, 
whether the concept in undefined or not, we cannot say that a group of axi-
oms defines a concept. If you do not know what congruence means, for in-
stance, then Hilbert’s axiom of congruence loses all meaning.273 

                               
270 Sjöstedt (1938a), p. 165: ”Då man diskuterar geometrins grundbegrepp och axiom, måste 
man enligt min mening hålla skarpt isär, vad som hör till den vetenskapliga geometrien och 
vad som kan passa i skolgeometrien.” 
271 Sjöstedt (1938a), p. 167: ” Att uppställa ett system av satser, som äro nödvändiga och 
tillräckliga för att systemet skall gälla endast för en viss grupp (resp. vissa grupper) av be-
grepp.” 
272 Sjöstedt (1938a), pp. 167-168 
273 Sjöstedt (1938a), p. 166: ”Jag har nu sökt visa ... att de geometriska begreppen äro fullt 
bestämda och måste vara det, även om de grundläggande begreppen punkt, rät linje och plan 
icke kunna i egentlig mening definieras. Man vet dock, vad som avses, då dessa termer an-
vänds. Ifrågavarande begrepp kunna därför icke på något sätt erhålla något tillägg till sin 
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Even though he did not mention “conception of space” in this passage, he 
did make this connection in a later section. 

It is true that the inferences in a geometrical proof must be formally correct, 
i.e. each proposition which is not an axiom shall be obtained as a conclusion 
with other propositions as premises. Thus, the propositions can ultimately be 
traced back to the axioms, which, according to my opinion, are characterized 
by being the ultimate conditions of geometry with respect to propositions. 
But, a geometrical proof contains something beyond these propositions, 
namely our conceptions of space. These are not propositions and can there-
fore not be traced back to the axioms. Likewise, they are necessary condi-
tions of a proof. Without the realization of our conceptions of space, you 
cannot accomplish a geometrical proof.274 

In accordance to this view, all the concepts in Euclidean geometry were de-
termined via our spatial intuition. Consequently, Sjöstedt found Nyhlén criti-
cisms about giving insufficient definitions or axioms about congruence un-
justified.   

Lecturer N. thinks that the regular definition of congruent figures (i.e. figures 
with the same shape and size but with different positions) is unsatisfactory, 
because what is meant by shape and size? A definition of these general con-
cepts ought to be impossible. But, does this entail that these concepts are un-
determined? That would be the same type of confusion as with the definitions 
and determination of the basic geometrical concepts. The point, the straight 
line, and the plane cannot be defined in any rigorous manner, but still they 
are fully determined. The same applies for the concepts shape and size. If one 
says that two figures have the same shape and size or that they have the same 
shape but different size, then Do we not know what is designated? Therefore, 
I cannot consider the definition just mentioned in any way unsatisfactory, es-
pecially not in a textbook at Realskolan. How then should the concept be de-
fined?275 

                                                                                                                             
bestämdhet, vare sig genom erfarenhet eller genom axiomsystem. Överhuvud kan en grupp 
axiom icke sägas definiera ett begrepp, vare sig begreppet är odefinierat eller ej. ... Vet man t. 
ex. icke, vad kongruens innebär, så förlora Hilberts kongruensaxiom varje mening.” 
274 Sjöstedt (1938a), pp. 168-169: ”Det är visserligen sant, att de slutledningar ett geometriskt 
bevis innehåller, måste vara formellt riktiga, d.v.s. varje ingående omdöme, som icke är ett 
axiom, skall ha erhållits som slutsats med andra omdömen såsom premisser. I sista hand skola 
alltså omdömena återföras på axiomen, som enligt min mening just karakteriseras av att vara 
geometrins yttersta förutsättningar av omdömeskaraktär. Men ett geometriskt bevis innehåller 
något utöver dessa omdömen, nämligen vissa rumsföreställningar. Dessa äro icke omdömen, 
kunna därför icke återföras på axiomen. Men de äro likväl nödvändiga förutsättningar för 
bevisföringen. Utan att man realiserar rumsföreställningar kan man överhuvud icke föra ett 
geometriskt bevis.” 
275 Sjöstedt (1938a), p. 174: ” Lektor N. anser den vanliga definitionen av kongruenta figurer 
(såsom figurer med samma form och storlek men olika läge) vara otillfredsställande, ty vad 
menas med form och storlek? Att definiera dessa allmänna begrepp torde vara omöjligt. Men 
äro därmed dessa begrepp obestämda? Det vore samma förväxling av odefinierbarhet och 
obestämdhet som vid de geometriska grundbegreppen. Punkt, rät linje och plan kunna ej i 
någon sträng mening definieras men äro dock fullt bestämda. Detsamma gäller om begreppen 
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Even though Sjöstedt did not state it explicitly, we understand that he au-
thored his textbook in accordance with this view.  

Another aspect of Sjösted’s reply to Nyhlén’s article is that it indirectly 
allowed a more lucid wording. 

Regarding the textbooks at Realskolan, the logical point of view may never, 
according to my opinion, be satisfied at the expense of the pedagogical one. 
In this context, I just want to mention one example. An expression such as 
“how far they may be extended” in the ordinary definition of parallel lines is 
of course unnecessary from a logical point of view. But is it then unnecessary 
or inappropriate in a school book? I think so not.276 

See also the quote below where Sjöstedt argues that it is all right to talk 
about triangles being moved. 

Of course, Sjöstedt recognized that Nyhlén did not share his view;277 to 
Nyhlén, any kind of axiomatic geometry should be completely freed from 
spatial intuition in all instances. Sjöstedt’s argument as to why his view and 
his textbooks are more appropriate was the following. To a mathematician a 
more formalistic system is interesting since it applies to other sets of con-
cepts than point, straight line, and plane. But in schools, he considered Hil-
bert’s axiomatic system inappropriate. He did not say why, but he probably 
found it too abstract. 

Regarding Nyhlén’s criticism of the axiom on movements, Sjöstedt ad-
mitted that he indeed had claimed that geometry requires the correctness of 
the proposition …  

Geometrical formations can have the same shape and size but different posi-
tions.278 

In this respect, Nyhlén was perfectly right. However, he had failed to notice 
or he had ignored Sjöstedt’s attempt to show that this proposition is not an 
axiom since it is not used a premise in the proofs. Thus, there is no need to 
use the proposition on translation as an axiom, since it is not an axiom, 
Sjöstedt argued.   

                                                                                                                             
form och storlek. Om man säger, att två figurer ha samma form och storlek eller att de ha 
samma form men olika storlek, nog vet man, vad som avses? Jag kan därför icke anse den 
nämnda på något sätt otillfredsställande, allra minst i en lärobok för realskolan. Hur skulle 
man här eljest definiera begreppet?” 
276 Sjöstedt (1938a), p. 165: ” Då det gäller en lärobok för realskolan, får enligt min mening 
den logiska synpunkten aldrig tillgodoses på bekostnad av den pedagogiska. I detta samman-
hang vill jag nämna endast ett exempel. Ett uttryck sådant som >>hur långt de än utdragas>> i 
den vanliga definitionen av begreppet parallella linjer är givetvis från logisk synpunkt onödig. 
Men är därför onödigt eller olämpligt i en skolbok? Jag tror det icke.” 
277 Sjöstedt (1938a), p. 168 
278 Sjöstedt (1936/37), p. 14: ”Geometriska bildningar kunna ha samma form och storlek men 
olika läge”.  
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That the size and shape of a diagram are not altered by a change in position is 
a precondition of the same nature as the precondition that a diagram is not al-
tered, but maintain its properties. To my knowledge, nobody has proposed 
the idea to submit the latter proposition as an axiom. But, it is as necessary as 
the “translation axiom.” I cannot accept the objection of lecturer N. that I 
should have forgotten that only thought translations are allowed. It is obvious 
that real translations only occur in connection to physical solids. But, is it 
each time really necessary to emphasize that the translation of the diagrams 
are imagined? Can any nuisance occur if one ignores this? In principle, my 
proof of the first congruence theorem is identical with the proof submitted by 
lecturer N. on page 18. The only difference is that I do not quote the “transla-
tion theorem” as a premise since it is not used as such. One thinks of triangle 
congruent with �ABC, but in another position. That is necessary. But, it is not 
necessary to pass the judgment about the possibility of doing it.279 

Sjöstedt’s reply to the criticisms on the dependency of the axioms was that 
Nyhlén had missed the point of these axioms. Sjöstedt used two types of 
axioms in his textbooks: geometrical axioms and general axioms on magni-
tudes. It was the latter Nyhlén criticized for being dependent. These should, 
however, just be seen as pedagogical support for the students, Sjöstedt ar-
gued; they did not function as real axioms in an axiomatic system. More-
over, from the very beginning, Sjöstedt had considered these axioms to be 
tautological. Thus, there was no point in giving proofs for some of these 
axioms.280 

In many ways, the Sjöstedt’s argumentation appears to be a lengthier and 
more intricate version of Olson’s arguments, but in principle saying the same 
thing: school geometry and scientific geometry are different and cannot be 
measured by the same standards. However, this is not entirely correct; a cru-
cial difference is that Sjöstedt provided an explanation for why school ge-
ometry can be given the form he had given it and at the same time not be 
considered unscientific.  

                               
279 Sjöstedt (1938/39), pp. 174-175: “Att en figurs storlek och form icke ändras vid en läge-
ändring är en förutsättning av samma natur som förutsättningen, att en figur överhuvud icke 
ändras utan bibehåller sina egenskaper. Ingen har mig veterligt kommit på idén att anföra den 
senare satsen som axiom. Men den är ju lika nödvändig som >>flyttningsaxiomet>>. Lektor 
N:s invändning, att jag skulle ha glömt bort, att man endast får tänka sig flyttningen, kan jag 
inte godtaga. Det är ju klart, att verklig förflyttning endast förekommer vid fysiska kroppar. 
Men behöver man verkligen ideligen betona, att man tänker figurerna flyttade? Kan någon 
olägenhet uppstå, om man underlåter det? I princip är mitt bevis för första kongruensfallet 
identiskt med det bevis lektor N. anför s. 18. Den enda skillnaden i sak är, att jag icke citerar 
>>flyttningsaxiomet>> som premiss emedan det faktiskt icke användes som sådan. Man 
tänker en med �ABC kongruent triangel i ett visst annat läge. Det är nödvändigt. Men det är 
icke nödvändigt att fälla omdömet, att man kan göra det.” 
280 Sjöstedt (1938a), pp. 171-173 
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Differences between Olson and Sjöstedt – To follow Euclid or not to 
follow Euclid 
Olson and Sjöstedt had quite different views on how a textbook ought to be 
designed. Olson did not hesitate to deviate from the classical Euclidean out-
line, and he inserted theorems about symmetry, theorems that on some occa-
sions were used instead of the Euclidean congruence theorems. Sjöstedt, on 
the other hand, wanted to keep the Euclidean structure as far as possible in 
his textbooks, even though he did make alterations. A statement in the fore-
word of Sjöstedt’s textbook sums up his position on Euclid’s Elements and 
textbooks. 

The question regarding whether Euclid’s or some other course should be used 
in connection with basic geometry instruction is an old matter of dispute. The 
undersigned has gradually gained an increasingly confirmed conviction that 
Euclid’s course is superior in its entirety. None of the attempts to build ge-
ometry differently, which I have been informed about, do I consider even 
equal to the old man’s. These attempts are also, as I see it, more successful 
the more they agree with Euclid’s course. This does not, however, prevent me 
from considering certain modifications of Euclid’s system to be necessary 
…281  

Sjöstedt identified three types of modifications. 1) One should keep the es-
sential parts of Euclid’s course, but the justified pedagogical demands were 
not be set a side. 2) Due to the scientific investigations on the foundations of 
geometry from the preceding 100 years, Euclid’s axiomatic system should be 
modified. 3) The courses in geometry should not be too extensive, but more 
focused on the essential parts.282  

According to the foreword of Sjösted’s textbook, the main modifications 
were the following. Euclid’s congruence theorems were an essential part of 
the course. They were also pedagogically sound since they offered clarity 
and order, and they were possible to apply from the very beginning of the 
courses an onwards. Consequently, they were kept. Theorem I.16 in Euclid’s 
Elements, on the other hand, was cancelled for pedagogical reasons, even 
though it provided scientifically interesting proofs that were not based on the 
postulate on parallel lines.283 Sjöstedt did not specify what these pedagogical 
reasons were, but the geometry exercises in the final exams offer a clue. In 
order to solve these exercises, you do not have to apply the Theorems I.16 to 
                               
281 Sjöstedt (1936), p. 5: ”Frågan, huruvida man skall använda Euklides’ eller någon annan 
lärogång vid den grundläggande geometriundervisningen, är en gammal stridsfråga. Under-
tecknad har så småningom vunnit en alltmer befästad övertygelse, att Euklides’ lärogång i det 
hela är överlägsen. Intet av de försök jag tagit del av, att uppbygga geometrien på något annat 
sätt kan jag anse ens jämbördigt med den gamles. Dessa försök äro också enligt min mening 
desto mer lyckade, ju mer de överenstämma med Euklides’ lärogång. Detta hindrar emellertid 
icke, att jag anser vissa modifikationer i Euklides’ system vara nödvändiga, ...” 
282 Sjöstedt (1936), pp. 5-6 
283 Sjöstedt (1936), p. 7 
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I.25 in Euclid’s Elements. Indeed he cancelled all these theorems except for 
I.22 and I.23.284  

Due to these cancellations he had to provide a new proof of the ASA-
congruence theorem and the theorems on parallel lines. I return to these 
proofs in the next part of this dissertation. One of the modifications that fol-
lowed upon scientific considerations was the insertion of an axiom on the 
continuity of lines.285   

In many ways, Sjöstedt followed Petrini’s appeal to develop Euclid’s 
Elements. He retained the Euclidean congruence theorem and he added axi-
oms that were missing in the Elements. However, he was much more willing 
to modify the order of the theorems, and he also added new theorems. I re-
turn to this issue in the next part of the dissertation. 

Concluding remarks – Professional debates about 
elementary geometry instruction 
Geometry instruction in Realskolan 
Arguments about contents 
The curricula do not reveal much about the contents of the geometry courses, 
but if we consider the textbooks, they all contain a core of theorems from 
book I and III of Euclid’s Elements.286 In the professional debate, the content 
of the courses was not really called into question. Even though Euclid’s 
Elements and textbooks that followed Euclid very closely were criticized for 
being unsuitable as textbooks, there were no discussions about doing a com-
plete make-over of the geometry courses. There were no arguments about 
replacing the existing content by elements from analytical geometry or vec-
tor geometry. This implies that there was some sort of consensus regarding 
the content of the courses.      
 Not until 1938 was there a suggestion to give up the axiomatic method. One 
of the debaters, Nyhlén, argued that if the proofs did not meet the scientific 
standards of a proof, then one should found the elementary geometry on 
experiments and inductive reasoning.  

The main disagreements concerned methodological issues rather, i.e. the 
order in which the theorems should be presented, how the proofs should be 

                               
284 I.22: Out of three straight lines, which are equal to three given straight lines, to construct a 
triangle: thus it is necessary that two of the straight lines taken together in any matter should 
be greater than the remaining one. [Heath (1956), p. 292] 
I.23: To construct a rectilinear angle equal to a given rectilinear angle on a given straight line 
and at a point on it. [Heath (1956), p. 294] 
285 Sjöstedt (1936), pp. 7-8  
286 See Part D of the thesis for further details. 
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designed and the level of rigor in the proofs. I will return to these issues in a 
moment. 

Arguments about goals 
In the debate, the main goal of geometry instruction was to provide training 
in reasoning. Especially, the courses in axiomatic geometry were linked to 
this goal. The goal was first and foremost formulated in textbooks and arti-
cles about geometry instruction. Not until 1955 was a formulation about this 
goal inserted in the curriculum. In the previous curricula for mathematics it 
was established that students were supposed to attain skills and knowledge 
that were useful in every day life and working life. There were also formula-
tions about providing a general civic education. Hence, here we can observe 
a discrepancy between the curricula and the arguments of the elite.  

The goal about training in reasoning did of course encompass abilities to 
master logic and the axiomatic method, but there were other components as 
well. Let us first consider the epistemological aspects. In the debate, the 
debaters, especially Meyer, Hedström, Olson, and Sjöstedt, underscored that 
definitions, axioms, theorems, and proofs had to appeal to the students’ spa-
tial intuitions. Thus, the goal of geometry instruction was not simply a mat-
ter of attaining skills in logic. However, the arguments about spatial intuition 
mainly concerned methodological issues.  

One debater, Olson, also underscored the value of getting the students to 
understand why the axiomatic method was necessary and a more effective 
method than inductive or experimental methods; if the students did not un-
derstand why the proofs were necessary, they would not be motivated to 
learn. Hence, he was pointing to another type of knowledge: knowledge 
about logic and the axiomatic method was something different than knowing 
how to carry out a proof. 

Apart from the epistemological goals, several debaters took aim at the 
moral aspects of geometry instruction and training in reasoning. In this con-
text, critical thinking was the unifying idea. One argument was that geome-
try instruction fostered independent reasoning. A second argument was that 
geometry instruction conveyed a general ability to handle language. A third 
argument was that geometry instruction and the axiomatic method made the 
students aware of their spatial intuitions; geometry instruction sharpened the 
students’ conception of space. It is worth noting that there were no argu-
ments about the preservation of some historical or cultural heritage. The sole 
aim was the individual’s ability to reason.  

As I have mentioned, the curriculum did not contain an explicit formula-
tion about training in reasoning until 1955. But that does not entail that the 
debaters contradicted the curriculum. As I see it, they gave a more precise 
meaning to the goal about conveying a general civic education in connection 
to mathematics instruction, a goal that was explicitly stated in the curricula.  
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Taken together, the arguments described above give us a picture of what 
the expression ‘training in reasoning,’ or simply ‘reasoning,’ could mean in 
connection with geometry instruction. The expression ‘training in reasoning’ 
had several connotations, and it was not just a question of learning logic and 
proofs.   

Thus far, I have described the goals and the aspects of training in reason-
ing the debaters wrote about. However, there are aspects of geometry in-
struction that the debaters did not discuss in terms of aims or training in rea-
soning. One essential aspect that the debaters did not discuss is the heuristics 
of geometry or questions regarding discovery.287 A concrete goal in connec-
tion to elementary geometry instruction could have been to become a skilled 
problem solver. The arguments about spatial intuition may be seen as a heu-
ristic element, but spatial intuition was primarily mentioned in connection 
with the understanding of concepts, theorems, and proofs. Spatial intuition 
should function as a support for the proofs.  

As a matter of fact, such a discussion on heuristics would not have been 
inappropriate. In part E of this dissertation, I show that the geometry exer-
cises in the final exams required not only an ability to solve rather compli-
cated problems, but also an ability to compose short proofs on your own. 
The geometry exercises of that type were included in each final exam 
throughout the period 1905-1962. In this part E, I also argue that it was more 
important for the students to solve problems than to master techniques of 
proof in order to pass the geometry exercises at the exam test.  

Moreover, at the end of the period, contemporary literature on the subject 
existed. Pólya’s first work on problem solving, How to solve it, was pub-
lished in 1945. Here, problem solving was given a thorough treatment and 
Polya offered strategies for problem solving.288 Actually, Sjöstedt published 
a book where he discussed methods to solve geometrical problems.289 How-
ever, this textbook was primarily intended for upper secondary schools and 
he did not bring up problem solving in the debate on geometry instruction. 

My point here is that the relevance of the arguments in the professional 
debate was limited to issues related to the axiomatic method, proofs and 
textbook. 

However, these arguments were by no means irrelevant since the text-
books were designed in accordance with the axiomatic method. Moreover, 
there were indeed alternatives to choose from, which I show in Part D of the 
thesis.     

                               
287 One exeption in this respect is Olson, who mentioned problem solving in one of his arti-
cles. However, he did just mention it briefly. [Olson (1926/27), p. 82]  
288 Polya (1970). Not until in 1970, Polya’s book on problem solving was published in Swed-
ish. 
289 Geometriska övningsuppgifter och lösningsmetoder, published in 1932, 1936, 1948 and 
1960. 
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Arguments about methodologies 
In the debate on the courses in axiomatic geometry in Realskolan, the argu-
mentation about how proofs and theorems should be designed and intro-
duced followed three lines. Moreover, the argumentation very much con-
cerned the concepts of rigor and spatial intuition. 

One standpoint was that reasoning based on spatial intuition would mud-
dle the proofs. According to the proponents of this argument, the textbook 
authors should aim at proofs that did not rely on spatial intuition; each infer-
ence in a proof had to be based on previous theorems alone. On this point, 
they were very critical about the common use of translations or movements 
of geometrical objects. These standpoints were primarily promulgated by 
Petrini some years before 1920 and in the 1920’s and by Nyhlén in the late 
1930’s. Petrini, also argued that Euclid’s Elements was the role model in this 
respect. However, the Elements could be improved, he argued. Nyhlén, on 
the other hand, did not mention the benefits of Euclid’s Elements. 

 A second standpoint was that the understanding of geometry required 
more than logic; the proponents of this argument argued that concepts, theo-
rems, and proofs should be introduced in way that appealed to students’ spa-
tial intuition. They also underscored that it was not possible to apply the 
same level of rigor in school geometry as in scientific contexts. This stand-
point was primarily promulgated by Meyer, Hedström and Olson mainly in 
the 1920’s and by Olson in the late 1930’s. One of the debaters, Meyer, 
specified the arguments about spatial intuition. Proof should be based on 
concepts of foldings and symmetry. As I show in the next part of this disser-
tation, textbook authors like Asperén and Olson used such proofs. On the 
basis of these arguments, Meyer found Euclid’s Elements inappropriate as a 
textbook at the elementary level. 

A third standpoint, promulgated by Sjöstedt in the late 1930’s, was that 
one should follow Euclid’s course as far as possible. But he did allow a 
wording that is closer to everyday language. For instance, in his textbooks he 
used formulations where triangles were moved as if they were real objects. 
He thought this was more functional in a school book than referring to some 
abstract translation theorem about the existence of congruent triangles. 
Moreover, he insisted that concepts and theorems had to appeal to our spatial 
intuitions. 

Apart from these standpoints regarding the design of textbooks, one 
methodological issue that was put forward in the discussions concerned the 
justification for using the axiomatic method. Some debaters, Meyer and Ol-
son, underscored the value of exercises or discussions where the students 
could discover the advantage of applying the exact axiomatic method instead 
of less exact experimental and inductive methods.  

An important aspect of the methodological arguments is that, just like the 
arguments about the goals, they mainly concerned the axiomatic method, i.e. 
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the choice of axioms, the design of proofs, the disposition of theorems, the 
level of rigor, and the proofs’ connection to spatial intuition. However, the 
students were not overlooked in these discussions. The argumentation also 
included the students’ understanding and appreciation of the axiomatic 
method and the proofs; some argued that the proof should appeal to the stu-
dents’ spatial intuition; others argued that the teachers should motivate the 
students by emphasizing the value of the axiomatic method. Also Petrini 
included discussed the needs of the students; he claimed that a high level of 
rigor helped the students to understand better. Consequently, we cannot say 
that the discussions on the axiomatic method were purely scientific and 
lacked relevance from a pedagogical point of view.  

Regarding the relevance of the methodological arguments about the 
axiomatic method and textbooks design, I would say that they were relevant 
also to the common teachers since there were different types of textbooks to 
choose from during the period 1905-1962. Nonetheless, just as the heuristic 
aspects were not a part of the discussions on the goals of geometry instruc-
tion, they were not either part of the discussions on methodologies. Spatial 
intuition was a central concept in the methodological discussions, but it was 
not part of a discussion on how the students should learn how to solve prob-
lems. Thus, the relevance of the methodological arguments was also re-
stricted to the axiomatic method. 

Geometry instruction in Folkskolan 
Arguments about contents 
As I have pointed out, my sources for the chapters on the debate on geome-
try instruction in Folkskolan has been literature used at teacher training insti-
tutes. This might be a reason why the contents of the courses were not called 
into question and discussed. Such questions were not for the lecturers and 
teacher trainees to discuss or decide upon. Moreover, the curriculum of 1919 
was very clear that Folkskolan was to provide skills and knowledge in 
mathematics useful in every day life and working life. What is more, all the 
investigated textbooks contained a lot of exercises were the students were 
supposed to calculate lengths, areas, and volumes. My point is that there 
were no major ambiguities about what should be the core of the geometry 
courses. 

Arguments about goals 
If we consider the curriculum for Folkskolan of 1919, the goals of mathe-
matics instruction, geometry included, were to provide skills and knowledge 
that were useful in every day life and working life. There were no formula-
tions about some general civic education; such formulations appeared only 
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in the curriculum for Realskolan. Nor were there any formulations about 
training in reasoning.  

The goal regarding training in reasoning in connection with mathematics 
instruction was not an exclusive concern for Realskolan, however. It oc-
curred in the literature used in teacher training as well. As early as the 1925, 
Wigforss stated that mathematics instruction in Folkskolan should provide 
training in reasoning. Setterberg had explicated the same goal some years 
earlier. However, they made no special references to geometry instruction.  

Actually, Wigforss did mention the heuristic aspect of studies in mathe-
matics, but just briefly.  

The impact of the argument about training in reasoning may not have 
been that great when Setterberg’s and Wigforss’ books on mathematics in-
struction were published about 1920. The books were only used at two insti-
tutes for teacher training during the 1920’s and 1930’s – the two institutes 
where Setterberg and Wigforss worked as lecturers. However, during the 
1940’s, Wigforss’ book was used at an increasing number of institutes. In 
1955, the goal about training in reasoning in connection to mathematics in-
struction was inserted in the curriculum of Folkskolan. The formulations 
about skills and knowledge useful in everyday life and working life even 
took on a less prominent position. Also in the curriculum there were no spe-
cial references to geometry instruction in connection with the formulations 
about training in reasoning. 

However, if we relate the two goals to the textbooks and the chapters on 
geometry, it is the goal of providing skills and knowledge useful in everyday 
life and working life that appears to have been the most relevant to the text-
book authors. Throughout the period 1905-1962, the textbooks investigated 
were dominated by exercises where the students were supposed to compute 
lengths, areas, or volumes of geometrical objects. Oftentimes, the exercises 
had some practical connotations as well.  

Of course, such a procedure requires some reasoning and I do not deny 
that these types of exercises can be difficult. In the next part of the thesis, I 
will describe the textbooks and the exercises, but, for now, suffice it to say 
that a solution to these exercises in applied geometry followed a standard 
procedure: first you choose a formula, then you plug in the numbers in the 
right positions, and finally you make a calculation. In contrast, some text-
books did contain other types of exercises where the solution was a bit more 
complex and not a matter of applying such a standard procedure. Still, these 
exercises were very rare. Considering the complexity of the exercises, the 
goal about training in reasoning appears to have been quite irrelevant as the 
textbooks authors designed the chapters on geometry. 

If we then compare the texts intended for the teachers in Realskolan, on 
one hand, and the texts intended for the teachers in Folkskolan, on the other, 
we can observe that the expression ‘training in reasoning’ had different 
meanings. In the former texts, training in reasoning was closely connected 
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with the courses in axiomatic geometry; in the latter texts, training in reason-
ing had a wider meaning and the expression was not restricted to geometry.  

Obviously, one has to remember that we are comparing two different 
school types, where Folkskolan did not have courses in axiomatic geometry 
and Realskolan had older students, at least for most of the period 1905-1962. 
However, in the 1950’s, Folkskolan could comprise up to 9 classes in some 
cities and municipalities and the curriculum in mathematics was extended, 
with more advanced mathematics, though not axiomatic geometry. More-
over, the 1950’s was a period when the curriculum of the coming Grundsko-
lan was being prepared and the curricula of Folkskolan and Realskolan were 
about to merge into one. In that context, I think it is interesting that training 
in reasoning could mean different things.  

Arguments about methodologies 
In the curricula of 1919 and 1955 it was established that visualizability, i.e. 
åskådlighet, should be the leading principle in connection to mathematics 
instruction, geometry included. In the teaching literature used in teacher 
training, these directives were explained in more detail, especially by Wig-
forss. The basic argument was that a teaching method based on visualizabil-
ity should counter mindless learning by rote. A central component of this 
method was that students should be active in making observations or ma-
nipulations of illustrations or other objects; actions that were supposed to 
draw attention to the essential features of a concept or a proposition.  

An important detail in Wigforss’ argumentation is that he linked training 
in reasoning to visualizability and this type of activity.  

According to the teaching literature, this teaching method also included a 
routine for how concepts, formulas, and other propositions should to be in-
troduced and explained. Experimental exercises were supposed to stimulate 
the students to make observations and manipulations; at the end of a se-
quence of such exercises, a definition, a formula, or some other proposition 
was established. If we consider the textbooks of the period 1905-1962 and 
the chapters on geometry, this routine was applied by all authors of the text-
books investigated. (The textbooks are described in the next part of the the-
sis.) Of course, there were differences, and the textbooks did change over 
time, but the experimental routine remained in some form.  

Thus, it appears as if the arguments about training in reasoning were rele-
vant to the textbook authors, but only when they designed introductions and 
explanations of concepts, formulas and other propositions.  

An important aspect of the arguments about the experimental routine is 
that it appeared in geometry textbooks well before Setterbergs and Wigforss 
works on mathematics instruction. Thus, their arguments about teaching 
methods based on spatial intuition were relevant, but hardly innovative. In 
this particular issue, Wigforss rather reinforced existing ideas on teaching 
methods and textbook designs. In comparison to Setterberg’s and others 
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treatises, Wigforss also added some more elaborate formulations about outer 
and inner visualizability. However, he did not give any further explanations 
about what outer and inner visualizability meant. 

To end with, I would like to emphasize that the argumentation about 
teaching based on visualizability contained much more than showing illus-
trations; it had much wider connotations than that.   

The arguments and the status of the debaters 
If we consider the sources that I have used for the investigation of the debate 
on geometry instruction in Folkskolan, the relation between the arguments 
and the authors’ professional status is quite unambiguous. The texts were 
used in teacher training and standpoints were justified but not criticized. 
Hence, what we see here is a direct link between the professional elite and 
the teacher trainees that was not interfered with by critics.  

In the investigated debate on geometry instruction in Realskolan, the 
situation was quite different. Here, arguments were countered and the debat-
ers presented different alternatives regarding geometry instruction. However, 
this debate was not exactly balanced if we consider the status of the debaters. 
It is possible to distinguish a center and a periphery if we by center mean 
positions with the central school authorities, editors of journals, involvement 
in teacher training, and authors of the most popular textbooks. 

In the center then, we find Meyer, Hedström, Olson, and Sjöstedt, on the 
periphery, Petrini and Nyhlén. Not only that, the arguments of the persons in 
each group also shared some basic features, even thought there were clear 
differences as well. The common feature of the former groups is that they 
were careful about making a clear difference between pedagogical and scien-
tific demands. Moreover, when these demands conflicted, the former should 
be given precedence. These pedagogical requirements were often linked to 
spatial intuition. Not that proofs and the axiomatic method should be re-
placed, but concepts, theorems and proofs should appeal to spatial intuition 
in some way. Petrini and Nyhlén, on the other hand, did not accentuate a 
difference between pedagogical and scientific demands. Moreover, their 
criticisms about the prevalent circumstances were primarily delivered from a 
scientific point of view. 

The existence of a center and a periphery adds an extra dimension to the 
professional debate, especially if we consider the debate as an incentive for 
actions and a source of arguments. According to my investigations, it ap-
pears as if the actors involved in mathematics instruction had to acknowl-
edge a clear difference between pedagogical and scientific demands in order 
to make a career alongside of teaching. Moreover, you had to recognize and 
appreciate the value of spatial intuition as well. 
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Part D – Geometry textbooks in Folkskolan 

The supply of textbooks 
Before the new curriculum for Folkskolan in 1919, geometry and arithmetic 
constituted two subjects. This might be one reason to why there were sepa-
rate textbooks for each subject. As the two subject merged into one, only 
textbooks containing both arithmetic and geometry were written. However, 
the publishers kept on printing separate textbooks for geometry as late as the 
early 1950’s, but some combined textbooks were also written before 1919. I 
denote these two types of textbooks separated textbooks and combined text-
books. One difference between these two kinds of textbooks is that the com-
bined ones were divided into series of books for each grade, while the sepa-
rated ones encompassed all geometry courses in Folkskolan. Another differ-
ence is the number of pages devoted to geometry. The combined books 
comprise in total about 45 pages and the separated about 65.290 

I have investigated the following textbooks: 
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first printing 1896 1910 1914 1914 1922 ~1921 1926 ~1927 ~1928 1929 1930 1930 ~1934 ~1944
last printing 1952 1942 1936 1943 1950 ~1943 ~1950 ~1950 ~1958 - 1953 - ~1956 ~1952
# editions 20 25 9 10 2 2 or 3 ~10 5 or 6 8 1 8 1 ~12 5  
Some years are imprecise (indicated by ~) since the whole series were not reprinted 
in the same year. The imprecise number of editions is because sometimes only parts 
of the series were being reprinted. 

According to a survey done in the early 1930’s, there were 99 different text-
books in arithmetic and geometry for Folkskolan and so-called higher Folk-

                               
290 In general, the textbook authors did comply with the directive of the curricula; yet, the 
separated textbooks had a more extensive course in year 4 in comparison with the directives 
of the 1919 curriculum. The separated textbooks investigated in this study were first pub-
lished before 1922, and the combined textbooks were published after 1921. 
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skolor. Some editions could comprise about one million books, while some 
were used only by their respective authors.291 By the time of the first official 
list of approved textbooks issued by the State textbook agency, i.e. Statens 
läroboksnämnd, in 1940, the number of textbooks for Folkskolan and higher 
Folkskolor was reduced to 63. On that list, all of the textbooks in the table 
above were included, except for Lindström et al, which had not been pub-
lished yet.292 On the list of 1955, the number of approved textbooks was re-
duced to 34. Here, all textbooks in the table above but those by Roman & 
Wigforss, Rydén, Frank & Norgren and Lindström, Jonzon & Jansson had 
been cancelled. Sandström & Jonsson, who were cancelled from the list, 
published a new version of their textbook that was accepted. Moreover, 
Lindström, Roman, and Wigforss were involved in the authoring of some 
other textbooks during the 1950’s. Apart from the textbooks written by these 
authors, there were only two other textbooks, after 1955, that covered the 
fourth year and onwards in Folkskolan.293  

Different approaches to visualizability and self-activity 
A common feature of all the textbooks investigated is that the authors ap-
plied some kind of approach based on visualizability and self-activity. In 
several of the forewords of textbooks, the concepts visualizability or self-
activity or both together were mentioned; according to the authors, the books 
were written in such a way that they promoted visualizability or self-activity. 
Moreover, on various occasions, the students were supposed to observe or 
measure an illustration or some other real object, e.g. a pencil box, a book, or 
the desktop.294 Another common feature of the textbooks investigated is that 
introductions and explanations of concepts, formulas, and other propositions 
followed a certain routine; the students were supposed to read or work 
through experimental exercises before definitions and propositions were 
explicitly stated. Hence, concepts were not introduced by a list of defini-
tions; the introductions of formulas and other propositions were not simply a 
matter of stating them.  

However, these experimental introductions and explanations were de-
signed in different ways. In the separate textbooks and some of the combined 
textbooks, i.e. the older books, the authors had submitted written lines of 

                               
291 Article in Folkskollärarnas tidning (1934), nr. 37, p. 37 
292 Statens läroboksnämnd (1940), pp. 90-97 
293 Statens läroboksnämnd (1955), pp. 45-52  
294 Asperén et al (1931), p. 3; Hellsten et al (1938), first page; Nord (1929), p. 2; Hoffstedt 
(1940), p. 3; Knutsson (1922), p. 2; Kärrlander (1930a), p. 3 and Lindström (1946), on the 
inside of the cover. Even though Dalin (1923) and Danielson (1925) do not make any com-
ments on åsksådlighet and self-activity, but every section in their books starts with a descrip-
tion of materials needed to facilitate intuition.  
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thinking where the reader is guided through the experimental exercises.295 In 
the newer combined textbooks, the student was supposed to work through 
similar exercises almost without any help of written lines of thinking or any 
other directives. On some few occasions, though, such written lines of think-
ing were attached. Some of the authors of the textbooks without any written 
lines of thinking point out that they are applying the so-called working 
method, i.e. arbetsmetoden in Swedish.296 

Introductions to the basic geometrical concepts 
A common feature of the textbooks that contained written lines of thinking is 
that the students are introduced to the basic concepts of point, line, surface, 
and solid by observing some real object. This was done in two different 
ways. One of the authors, Lundborg (1918), designed all his explanations in 
a rather strict format: an object P has some properties A; that which has the 
properties A is called Q; P is therefore Q. Take for instance the following 
passage. 

Each side [of a cube] has a length and a breadth. That, which has length and 
breadth, is called a surface; each side of the cube is therefore a surface. … In 
space, each edge extends in one direction, which is in length. That, which has 
only length, is called line; the edges of a die are therefore lines.297 

In contrast, Knutsson (1922), Danielson (1925), Ohlander & Ingvarsson 
(1920), Segerstedt (1924) and Dalin (1923) (separated textbooks) along with 
Nord (1931), Kärrlander (1930) and Rydén (1938) (combined textbooks) 
employed much more easygoing language. Here is a typical explanation 
from Knutsson (1922), where the students are supposed to observe a pencil-
box and grasp the properties of a line.  

                               
295 See Lundborg (1918), Danielson (1925), Knutson (1922), Dalin (1923) and Ohlander & 
Ingvarsson (1920) (separate textbooks) and Rydén, Frank & Norgren (1938) and Kärrlander 
(1930c) (combined textbooks). 
296 Along with the exercises that are linked to the introductions of concepts and propositions, 
there are some exercises, but not in all textbooks, where the students are supposed carry out 
constructions that occur in Euclid’s Elements Book I. The following constructions occurred: 
to construct an equilateral triangle, sometimes also an isosceles triangle; to bisect a given 
rectilinear angle; to bisect a given finite straight line; to draw a straight line at right angles to a 
given straight line from a given point on it; to describe a square on a given straight line. The 
construction of a straight line perpendicular to a given infinite straight line from a given point 
not on it was not treated in any textbook. Of course, the students were also expected to learn 
how to use a graded ruler, a compass, a protractor or a set-square in order to construct trian-
gles, squares, rectangles, rhomboids and regular polygons. 
297 Lundborg (1918), p. 3: ”Varje sida har längd och bredd. Det, som har längd och bredd, 
kallas en yta; var och en av kubens sidor kallas således en yta. ... Varje kant utsträcker sig i 
rummet i en riktning, näml. i längd. Det, som har endast längd, kallas linje; tärningens kanter 
äro således linjer.” The bold types are Lundborg’s. 
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Put a pencil-box in front of you. Take a piece of chalk, and use it to rub the 
box from one corner to another. The edge that is produced looks like a thin, 
white stroke or a line. Depict it on the blackboard or a paper. Measure the 
chalked edge using a metric measure. Assume it is 20 cm long. Measure the 
breadth. No matter how much you try, the measurement will fail, because 
lines have length but no breadth.298 

The other authors used similar types of explanations where the students are 
supposed to observe a pencil-box.299 Here is another typical explanation, this 
time from Danielson (1925), where the student is supposed to understand the 
properties of a point. 

Take in each hand a very fine needle. Try to hold the needles in such a way 
that the tips rest against each other. It fails, because the place where the tip of 
the needle begins has no extension. It has no length or breadth or height. The 
place where the tip of the needle begins is a point. There is no outer sign that 
fully corresponds to a point. A point has no extension in any direction. The 
point can therefore not be divided and is therefore not a magnitude.300 

Some authors of the combined textbooks, Lindström, Jonzon & Jansson 
(1946), Sandström & Jonsson (1934), Lövgren & Nordström (1926) and 
Roman & Wigforss (1930), choose a different approach for introducing the 
basic concepts of point, line, surface, and solid. Their introductions are 
shorter and the observations of objects are not as experimental as the preced-
ing ones; it is more a question of pointing at objects and giving them names 
– this is a solid, here are its surfaces and its edges. 

You have perhaps heard the word “water surface”, ”surface of a wall” and 
other phrases that end with surface. Give examples of surfaces that you can 
see a) in the class room b) outdoors!301 

Some surfaces are curved, others are plane. Give examples.302 
                               
298 Knutsson (1922), p. 3: ”Ställ en pennlåda framför dig! Tag en kritbit, och stryk med den 
från ett hörn på lådan till ett annat! Kanten, som sålunda behandlats, ser ut som ett smalt, vitt 
streck eller linje. Avbilda den på svarta tavlan eller på papperet! Mät med ett metermått den 
kritade kantlinjen! Vi antaga, att den är 20 cm. lång. Mät bredden! Hur du än försöker, miss-
lyckas denna mätning, ty linjer hava längd men icke bredd.” The bold types are Knutsson’s. 
299 Danielson (1925), p. 3; Dalin (1923), pp. 3-4 
300 Danielson (1925), pp. 4-5: ”Tag i vardera handen en ytterst fin nål! Försök att hålla nålarna 
så, att deras spetsar vila mot varandra! Det misslyckas, därför att det ställe, där nålens spets 
börjar, icke har någon utsträckning. Det har varken längd, bredd eller höjd. Den plats där 
nålens spets börjar, är en punkt. Något yttre tecken, som fullt motsvarar en punkt finnes icke. 
En punkt har icke utsträckning i någon riktning. Punkten kan följaktligen icke delas och är 
således icke någon storhet.” Danielson (1925) differs from the others in one interesting as-
pect; he is the only one that explicitly points out that geometrical objects are not real objects, 
which we may observe in the quote above. This is done on a couple of other occasions. 
301 Lindström, Jonzon & Jansson (1946), p. 43: ”Du har kanske hört orden >>vattenyta>>, 
>>väggyta>> och andra ord på –yta. Giv exempel på ytor, som du kan se a) inne i skolrummet 
b) ute!” 
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Moreover, in these textbooks, the written lines of thinking were dropped, 
and the students were supposed to work through the exercises on their own. 
This newer way of introducing the basic geometrical concepts was also ap-
plied in the first textbooks for Grundskolan during the 1960’s.303 

Despite these differences regarding the introductions of the concepts of 
point, line, surface, and solid, all the authors applied very much the same 
descriptions of the basic geometrical objects and different subcategories of 
geometrical objects. The students are told that the ends of lines are points, 
the edges of surfaces are lines, and the sides of solids are surfaces. The stu-
dents are also introduced to the concepts straight and crooked lines, plane, 
and bulging surfaces, and they are instructed to identify real objects that 
have the same properties. They were also told that a straight line is the short-
est line between the two endpoints. In several of the textbooks, the students 
are supposed to measure the lengths of straight and curved threads between 
two points. However, the Euclidean definitions of a straight line and a plane 
surface are not used. The authors also introduced the concepts vertical, hori-
zontal, and slanting lines.304 

Introductions to and explanations of propositions about 
geometrical objects 
Alongside the basic geometrical concepts described above, all textbooks 
treated the different subcategories of surfaces and solids, such as rectangle, 
square, triangle, rhomb, rhomboid, circle, ellipse, parallelepiped, cylinder, 
cone, pyramid, and sphere. In connection to each new subcategory, the stu-
dents were introduced to how the area or volume is computed. All these in-
troductions followed a certain routine. First, the students work through one 
or more exercises where they investigate a diagram by means of folding and 
cutting pieces of paper, by measuring, or by numerical approximations. 
Eventually, these exercises lead up to a formula or some other proposition.   

In this way, an introduction also functioned as some sort of explanation 
for why a proposition is correct. It was more than simply stating a formula or 
a proposition and then providing a description of how the formula or the 
proposition is applied in different settings – this is the area formula for rec-
tangles; you use it like this. 

                                                                                                                             
302 Lindström, Jonzon & Jansson (1946), p. 43: ”En del ytor är buktiga, andra är plana. Giv 
exempel!” 
303 See for instance Berg & Arvidsson (1964), pp. 58-62; Lindström (1964), pp. 68-69 and 
Boman & Rydén (1965), pp. 60-63. 
304 Angles were usually introduced by means of an illustration and without any formal defini-
tion. Very often, the size of angles is associated with rotation – one straight line is fixed and 
another straight line is turned around one of its ends. In some cases, rotation is also illustrated 
by an opening book or door. Angles between curved lines are not mentioned at all. The stu-
dents also learn how to use a protractor when measuring and constructing angles. In all text-
books, the measure is degrees. 
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Also at this point, these explanations differed somewhat as some authors 
submitted written lines of thinking. 

In the following sections, I describe how some of these explanations were 
carried out. To some extent, the explanations were based on the same idea, 
but there were also apparent differences between the older separate text-
books and the newer combined textbooks.  

The area formula for rectangles 
In all the investigated textbooks, the introductions to the area formula for 
rectangles were based on the same idea. Some differed in respect to the writ-
ten lines of thinking. After being introduced to the area measures of the met-
ric system, the students were supposed to count the square centimetres in a 
diagram where a number a square centimetres are put in a row. The next step 
is to do the same thing in a diagram where a greater number of square centi-
metres are put in two rows. 

 

  

In some of the textbooks, the students were supposed to measure the top of a 
book or the desktop by placing and counting pieces of paper having the 
shape and size of a square decimetre. 

The next step was to learn the shortcut where you count the squares in 
one row and then you count the rows included in the diagram. By multiplica-
tion, you then get the number of squares contained in the diagram. The next 
step was to use a ruler instead of counting squares. The final step was to 
introduce the A = b � h, but sometimes the formula was left out and intro-
duced only verbally.305 As you will notice in the quotes below, the term area 
was not used by all authors. Instead they used the terms “surface number”, 
“surface content”, “size of a surface” or just “surface”. 

Lundborg (1918) 

Draw a straight lined surface with 4 equal edges and right angles. This sur-
face is denoted square.  

A plane, straight lined, four sided surface, whose sides are equal and the an-
gles are right is called a square. 

                               
305 Kärrlander (1930b), pp. 69-74; Lindström et al (1946), pp. 43-48; Sanström et al (1934a), 
pp. 79-83; Lövgren et al (1926a), pp. 53-56, 69-71; Roman et al (1929), pp. 48-52; Ohlander 
et al (1920), pp. 22-23; Lundborg (1918), pp. 12-17; Danielson (1925), pp. 22-26 and Knuts-
son (1922), pp. 16-19 
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Note 1. Surfaces are measured by other surfaces of a specific size (hectare, 
are, sqm, etc.). The square is considered suitable to measure other surfaces. 
The size of a surface is called area or surface content. 

 

29. Draw a straight line AB, one dm long, and draw a square on this line. 
This square is one sqdm. Divide the line AB in 10 equal parts, likewise the 
line AC. What is the size of each part? (1 cm) Draw from the intersection 
points, perpendicular lines to the opposite sides. The small squares that are 
generated are limited by 1 cm lines, and they are called sqcm. 10 sqcm stand 
along the line AB and the diagram contains 10 such rows; hence, the whole 
surface contains 100 sqcm since 10 � 10 = 100. From this, we realize that the 
surface of a square is attained by multiplying the length number (the base) by 
the width number (the height). If we denote the length number by L, and the 
width number by W and the surface content by S, then the formula for the 
computation of a square’s surface should be this: L � W = S. It is pro-
nounced: the length number times the width number equals the surface con-
tent.306  

Danielson (1925) 

The measuring of rectangles 

35. Lines are measured by lines of a certain length, e.g. the meter. Measures 
used to measure lines or lengths are called measures of length, e.g. the meter 
measure. Angles are measured by angles of a certain size. Measures used to 
measure angles are called measures of angle, e.g. protractors. Then what is a 
surface measured by? Surfaces are measured by surfaces of a certain size. 
What should we then call those measures? Surface measures. Three measures 
are shown on the next page. 

Square millimeter measure, (sqmm) 

Square centimeter measure, (sqcm) 

Square decimeter measure, (sqdm) 

                               
306 Lundborg (1918), pp. 12-13. The bold types are Lundborg’s 
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A square-shaped board with sides of one meter is called a square meter 
measure (sqm.) 

Draw a square meter on the blackboard. Practice carefully: 

1 sqm. = 100 sqdm … 1/100 sqcm = 1 sqmm 

When measuring large surfaces, hectare and are. 

1 hectare = 100 are … 1/100 are = 1 sqm. 

36. Draw a sqcm on a piece of stiff paper and cut it out? [sic.] What it is this 
measure called? Cut out 12 such measures. Draw a rectangle, 4 cm long and 
3 cm wide. To measure the surface of this rectangle is done in the following 
way:  

 

You place the sqcm measures in a row along the length of the rectangle. How 
many squares fill a row? Now, another row is placed above the first. Above 
this row, another row is placed. In this manner, the whole rectangle is cov-
ered. How many sqcm are needed to accomplish this? Thus, how large is the 
rectangle? 12 sqcm. To measure large surfaces in this way may seem too dif-
ficult; indeed, sometimes it is impossible. Therefore, one usually does not 
measure surfaces, one computes their size. 

The computation of the rectangle 

37. Draw a straight line, 1 cm long. How many sqcm can be placed along this 
line? Draw a line, 2 cm long. How many sqcm can be placed in a row along 
that line? Draw a line, 3 cm long. How many sqcm can be placed on it? 

 

How many sqdm can be placed along a line, 
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20. 5 dm long?   …   27. 3,4 dm long? 

How many sqdm can fill a row along the width of the window? Along its 
height? How many sqm can be placed in a row along the length of the floor? 
Along its width? Draw a rectangle, 5 cm long and 4 cm wide. How many 
sqcm can be placed in a row along the length of the rectangle? How many 
rows fill the whole surface? Hence, how many sqcm does the whole rectangle 
contain? 

 

In the computation of the rectangle’s surface, you can proceed in the follow-
ing manner: You measure the length to find the number of surface measures 
in a row, and you measure the width to find the number of rows. The number 
of surface measures in a row is then multiplied by the width number of the 
surface.307 

Lindström (1946) 

 

584. A square with the side 1 cm is named square-centimetre (abbreviated 
cm2). 

585. Draw the rectangles A, B and C here below and divide them into to cm2. 
Below each surface, write down how many cm2 it contains. 

 

                               
307 Danielson (1925), pp. 23-25. The italics are Danielson’s. 
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586. Draw other rectangles and compute their size in the same manner: a) 6 
cm long, 2 cm wide … j) 5 cm long, 3 cm wide. 

587. Instead of drawing cm2 on a surface, you may measure it by a strip di-
vided into cm2. See the picture at the top of the page. Make such a strip and 
measure the rectangles in exercise 585. 

588. Draw new rectangles and measure the surfaces by square-centimetres: a) 
4 cm long, 5 cm wide … j) 8 cm long, 8 cm wide. 

589. Elsa had a small notebook that was 9 cm high and 6 cm wide. Compute 
the size of each page of the notebook. 

  

590. A square, whose side is 1 dm, is called a square-decimetre (abbreviated 
dm2). How many cm2 are contained in 1 dm2. 

591. Compute the surfaces of the rectangles that have the following meas-
ures: a) 4 dm long, 3 dm wide … h) 9 dm long, 8 dm wide. 

592. 1 dm2 = ? cm2  … [11 more exercises of this kind] 

593. How many dm2 and m2 do we get from: a) 120 cm2 … l) 207 cm2 ? 308 

 

Lindström’s approach to the area measure and the area formula was also 
applied in the first textbooks for Grundskolan in the 1960’s.309  

As the quotes above implies, the authors did not always make a clear dis-
tinction between a surface and the measure of a surface, i.e. the area of a 
surface. A surface is a two dimensional geometrical object, while an area is a 
                               
308 Lindström et al (1947), pp. 44-46 
309 See for instance Berg & Arvidsson (1964), pp. 62-65; Lindström (1964), pp. 70-73 and 
Boman & Rydén (1965), pp. 66-68. 
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measure or a number without spatial dimensions. For instance Danielson 
(1925) uses the expression “The computation of the rectangle”; Lindström 
(1947) uses the expression “Compute the surface of a rectangle”. In the early 
1960’s, the expression “Compute the surface” occurs in the final exams in 
mathematics in Realskolan as well. Actually, Lundborg (1918) made a much 
clearer distinction between geometrical object and measure by stating that 
“The size of a surface is called area or surface content.” We can observe the 
confusion of surface and measure in several of the textbooks throughout the 
period 1905-1962. 

In the new curriculum for Grundskolan of 1969, we can observe a differ-
ence in this respect. For instance, from the recommendations regarding 
measurements, it is clear that the authors made a difference between length, 
area and volume, on one hand, and geometrical objects such as rectangle or 
solids, on the other hand.310   

The sum of the angles in a triangle equals 180� 
Two “proofs” were quite similar in the sense that the corners of a triangle 
were placed beside each other. One way is to cut off the corners of a paper 
triangle and place them on a straight line. Together they constitute 180� or 
two right angles.311 

 

   

The other way is to fold the paper triangle along the dotted horizontal and 
vertical lines depicted in the diagram below.312 The horizontal line bisects the 
sides of the triangle. 

 

   

A second approach was to measure the angles and compute their sum. After 
having done this a number of times, one reaches the conclusion that the an-
gle sum of all triangles equal 180�.313 This was the approach recommended 
by Wigforss in his book on methods in mathematics instruction, and it was 

                               
310 Skolöverstyrelsen (1969), pp. 12-13 
311 Lindström et al (1947), p. 58  
312 Lövgren et al (1926b), pp. 84-85  
313 Kärrlander (1930c), p. 57; Roman et al (1930), p. 62; 
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applied in his and Roman’s textbook. In the textbooks produced for 
Grundskolan in the 1960’s, this was the common approach.314   

However, the third and most common approach in the investigated text-
books was simply to state the proposition.315 Thus, the experimental routine 
was not always applied; there were exceptions. 

The definition of � and the formulas for the circumference and area of a 
circle 
The introduction of � was done in the same way in all the textbooks. Having 
measured the diameter and the circumference of one or more circles, it was 
described how the ratio between the circumference and the diameter equals 
almost three. Eventually, the conclusion that the quotient equals 3,14 or 22/7 
was reached. In the end, the students were introduced to the equality circum-
ference/diameter = �.316 

The introductions to the area formula were quite different. There were 
three approaches, based on three different approximations. 

1) In the pre-1930’s-textbooks, the authors first derived that the area A of 
a regular polygon equals the length p of the perimeter multiplied by the 
length a of the apothem divided by two, i.e. A = p � a / 2. In order to derive 
the area formula for circles, a circle was considered to be a regular polygon 
with a great number of sides; the radius of the circle was considered to be the 
apothem of the polygon. Thus, the area A of a circle equals length p of the 
perimeter multiplied by the length r of the radius divided by two, i.e. A = p � 
r / 2. Since we know that p = 2 r � , we get A = � r2. 

2) The students were supposed to compare the surfaces of a circle to the 
surfaces of two squares, where the sides of the squares equals the radius r 
and the diameter d of the circle, d = 2r. 

 

  

                               
314 Berg & Arvidsson (1966), p. 130; Lindström (1967), pp. 143-144 and Boman & Rydén 
(1964b), p. 50. Yet, Berg & Arvidsson (1966) did submit the explanation where a paper trian-
gle is folded. 
315 Sanström et al (1934b), p. 80; Ohlander et al (1920), pp. 41-43; Lundborg (1918), p. 22; 
Danielson (1925), p. 41 and Knutsson (1922), p. 29 
316 Kärrlander (1930d), p. 70; Lindström et al (1948), p. 58; Sanström et al (1935), p. 88; 
Lövgren et al (1926c), p. 85; Roman et al (1931), p. 67; Ohlander et al (1920), pp. 13-14; 
Lundborg (1918), pp. 37-38; Danielson (1925), pp. 49-50 and Knutsson (1922), p. 41 
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The students were then told that the surface of the circle is greater than the 
surfaces of two small squares and greater than the surfaces of four small 
squares, i.e. 2r2 < A < 4r2 = d2 . Without any further comments, the author 
states that A = � r2. 

3) A third approach, recommended by Wigforss, was to have the students 
draw the following diagram on a millimetre-squared sheet of graph paper. 

 

  

By counting and computing the number of millimetre squares contained by 
the square on the radius and the quarter of the circle, the students are sup-
posed to calculate the ratio between the area of the circle and the area of the 
square on the radius. Eventually, this leads to the formula A = � r2. 

All of these alternatives occurred in the textbooks for Grundskolan.317 A 
detail is that the area formula for circles was treated in grade seven in 
Grundskolan; according to the 1919 curriculum for Folkskolan, this formula 
should be treated in grade six.318 

Calculation exercises and applications 
In the curriculum of 1919, it was established that the mathematics courses of 
Folkskolan should provide knowledge suitable for practical daily life. This 
purpose had great influence on the design of the exercises that were not tied 
to the introductions of various concepts and propositions. With very few 
exceptions, the exercises were applied, and the students were supposed to 
calculate the lengths, areas, or volumes of various objects. 

After the initial training in calculation and applying the formulas, the stu-
dents face some more complicated exercises. However, the increasing diffi-
culty mainly concerns arithmetic in connection to price per unit and different 
units of lengths, areas, volumes, and currency. Here are some examples of 
typical exercises that occur in all geometry textbooks of the period in focus. 

                               
317 Alt. 1) Hultman, Kristiansson & Ljung (1963a), p. 122, Hultman, Hedvall (1963b), p. 194. 
Alt. 2) Wahlström & Olsén (1963a), p. 54. Alt. 3) Boman & Lindberg (1964c), pp. 52-53; 
Mattsson, Fredriksson, Göransson & Thulin (1963a), pp. 164-165; Boman & Lindberg 
(1964c), pp. 52-53; Mattsson, Fredriksson, Göransson & Thulin (1963b), pp. 168-169 
318 Kungl. Skolöverstyrelsen (1919), p. 60  
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A room is 4 m long and 3 m 5 dm wide: a) How long is the circumference of 
the floor surface? b) How many lengths of wallpaper are needed for the 
room? c) What is the cost for the wallpaper if the price is 3 öre per meter? d) 
How large is the floor? e) What does the varnishing of the floor cost if the 
price is 40 öre per square meter? f) What does painting the ceiling of the 
same room cost if the price is 58 öre per square meter?319 

What is the cost of painting a wall 8 m long and 4 m high, with 3 windows 2 
m high and 1 m wide, if the paint costs 1 kr 75 öre per square meter?320 

a) How much timber does a plank contain if it is 4 m 3 dm long, 2 dm wide 
and 4 cm thick? b) How much is it for a plank if the price is 20 kr per cubic 
meter?321 

What is the weight of a four-sided stone pillar when its height is 15 dm, its 
width is 8 dm 5 cm and its thickness is 4 dm? We assume that each cubic 
decimeter of stone is 5 times heavier than 1 cubic decimeter of water that 
weighs 1 kilogram?322 

As the concepts rhomboid, triangle, circle, polygon, pyramid, cone, ellipse, 
and sphere were introduced, the students were supposed to work with similar 
exercises as the ones above. These types of calculation exercises were the 
most common in all the investigated textbooks from the period 1905-1962, 
separated as well as combined. In some of the exercises, the students were 
supposed to compute the area of the surfaces of a standard solid, e.g. a cube, 
a cylinder, but also cones. 

As a matter of fact, ellipses, cones and spheres were treated in the text-
books up to the 1950’s. 

However, some of the combined textbooks, which appeared after 1920, 
contained exercises where the measures of lengths, height, and widths were 
not directly given and the students could not put numbers into a formula at 
once; the students had to investigate the geometrical objects along with pos-
sible formulas before they could start the calculations. Here are some exam-
ples. 

How great must the diameter of a circular dining table be if 10 persons are 
supposed to sit around the table? The distance between each person is 5 
dm.323 

The perimeter of a rectangle equals 8 m 7 dm 6 cm. Its length is a third of the 
perimeter. What is the rectangle’s a) length; b) breadth ; c) surface?324 

                               
319 Danielson (1925), p. 32 
320 Danielson (1925), p. 32 
321 Danielson (1925), p. 31 
322 Knutsson (1922), p. 27 
323 Roman & Wigforss (1931), p. 71 
324 Asperén (1931a), p. 54 
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The perimeter of a quadratic floor is 26 m. Compute the size of the floor’s 
surface.325 

The surface of a rectangle is 17,86 m2. The width of the rectangle is 3,8 m. 
What is the size of the perimeter?326 

Note that in the first example the widths of the persons are not given. Hence, 
the formulation of the exercise does not provide enough data to solve the 
problem. Here, the students must estimate the width on their own, unless the 
persons have zero width.   

In all of the separated textbooks, i.e. the textbooks first printed before 
1925, there is only one example that is similar to the type of problems listed 
above. However, in the textbooks printed after 1925, these new types of 
exercises were not at all as common as the older type of exercises where the 
students are supposed to decide a formula, plug in the numbers in the right 
position, and compute an answer.    

Another type of exercises that occurred in combined textbooks concerned 
angles, more specifically, propositions about adjacent angles and the sum of 
angles in a triangle. Here are some examples. 

An angle is a) 67� ; b) 88� ; c) 107� ; d) 146�. How large is the adjacent an-
gle? Draw it.327 

In a right triangle, one of the acute angles is 38�. What is the size of the other 
angle?328 

In a second type of angle exercises, the students are supposed to determine 
the angles between the hands of a clock. For instance … 

What is the size of the angle between the pointers at 5 a clock?329 
I would say that these clock exercises are a more difficult than the usual 
computation exercises in the sense that it is not obvious what formulas or 
propositions you should use. The student must rethink minutes to degrees 
before they can solve the task. If the clock is not showing whole hours the 
exercises becomes even more difficult.  

Still, in comparison to the number of the older exercises where the stu-
dents are supposed to calculate areas and volumes, these new angle exercises 
were very rare.  

The separated textbooks did not contain these types of angle exercises 
even though adjacent angles and the sum of angles in a triangle are men-

                               
325 Lindström (1948), p. 71 
326 Lindström (1948), p. 71 
327 Asperén (1931c), p. 84 
328 Sandström (1934b), p. 81 
329 Asperén (1931c), p. 68 
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tioned. In the separated textbooks, exercises that included angles were meas-
uring and constructions exercises, i.e. the students were supposed to draw 
and measure angles. 

Taken together, all the textbooks during the period 1905-1962, separated 
as well as combined, contained large sets of computing exercises. The stu-
dents are given measures of heights, lengths, widths, radius, etc., of some 
object, often a garden or a building; by putting the numbers in the right for-
mula, the students are supposed to compute areas or volumes. Sometimes the 
area or the volume was given together with one or two lengths and the stu-
dents were supposed to compute a length. 

In the geometry textbooks for the new Grundskolan, the proportions of 
the exercises did not change. Also, the routine regarding how to introduce 
concepts, formulas, and other propositions were kept in these textbooks.330 

Concluding remarks – the textbooks in Folkskolan and 
the significance of the professional debate 
During the period 1905-1962, the basic elements of the geometry courses in 
Folkskolan were formulas for computing lengths, areas, and volumes of ba-
sic geometrical objects such as rectangles, squares, triangles, parallelograms, 
circles, and solids made up of such surfaces. A majority of the geometry 
exercises in the textbooks required the following solution: choose a formula, 
put in the measurements, and compute the answer. Moreover, most of these 
exercises had a practical connotation as the students were supposed to com-
pute the length, area, or the volume of various objects; such as a wall or a 
cylindrical piece of timber. Often, these exercises contained an economic 
aspect where the students had to compute a price when the price per unit was 
given. I term this type of exercises the A-type.  

After 1925, another type of exercises, requiring more elaborate solutions, 
were submitted in the textbooks. An example is exercises where the students 
are supposed to compute the angle between the hands of a clock at a certain 
time. I call this type of exercises the B-type. The solution to such an exercise 
was not just a question of choosing a formula, plugging in numbers, and 
carrying out the calculations. From a mathematical point of view, the B-
exercises were a bit more demanding.  

                               
330 See for instance Boman & Rydén (1965); Boman & Rydén (1964a);  
Boman & Rydén (1964b), Boman & Lindberg (1964c); Berg & Arvidsson (1964); Berg & 
Arvidsson (1965); Berg & Arvidsson (1966); Hultman, Kristiansson & Ljung (1963a); 
Hultman & Hedvall (1963b); Lindström (1964); Lindström (1965); Lindström (1967); Matts-
son, Fredriksson, Göransson & Thulin (1963a); Mattsson, Fredriksson, Göransson & Thulin 
(1963b);  
Wahlström & Olsén (1963a); Wahlström & Olsén (1962); Wahlström & Olsén (1963b).  
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In the curricula for Folkskolan during the period 1905-1962, one of the 
goals of mathematics instruction was to promote knowledge useful in every-
day life and working life, together with economic awareness. The A-
exercises provide a good picture of how the goal of useful knowledge in 
mathematics was understood by the textbook authors. Since these types of 
exercises dominated all the investigated textbooks of the period 1905-1962, 
it indicates that the goal of providing knowledge useful in every day life and 
working life was relevant for the textbook authors. Moreover, due this domi-
nance of the A-exercises, I think it is fair to say that goal to promote knowl-
edge useful in everyday life and working life was widely spread among the 
teachers of Folkskolan.    

However, other arguments regarding goals were put forward during this 
period. Take for instance Wigforss’ books on methods for mathematics in-
struction, published in 1925, where he underscored the value of training in 
reasoning in connection with studies in mathematics. The occurrence of B-
exercises after 1925 may have been an attempt by the textbook authors to 
meet this goal regarding training in reasoning. But, if B-exercises occurred 
in the textbooks, they were very few in comparison to the number of A-
exercises. Thus, the goal about training in reasoning did not stimulate the 
textbook authors to include great numbers of the more difficult B-exercises. 

The methodological arguments during the period 1905-1962 were centred 
on the concept visualizability, i.e. åskådlighet. The basic argument for ar-
ranging mathematics instruction according to the principle was that it count-
ers rote learning and mindless repetitions of rules and formulas. The argu-
mentation about visualizability and mathematics instruction was, however, 
not just a question of showing an illustration every now and then. A key 
point was that the students were supposed to observe illustrations or other 
real objects in an active way. This idea also included that the students should 
observe, manipulate, or measure an illustration or some other object.  

Another key point was that a certain routine should be used when intro-
ducing and explaining the meaning of concepts, formulas, and other impor-
tant propositions. These should not just be listed or stated. Instead, the stu-
dents were supposed to work through a series of experimental exercises 
where they observe, measure or manipulates an illustration or some other 
real object. After these exercises, the definitions, formulas and other proposi-
tions were explicitly stated. 

In all the textbooks investigated, concepts, formulas, and other important 
propositions were presented according to this routine, even though there 
were variations. A clear majority of the authors inserted longer series of 
experimental exercises, but there are examples where they were very brief. I 
denote this type of laboratory exercises the C-type. 

We might link this change of the C-exercises to the goal about training in 
reasoning, since the students were supposed to recognize the meaning of a 
definition, a formula, or some other proposition on their own. 
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During the period 1905-1962, we can observe a change in the design of 
the C-exercises. This change occurred in some of the textbooks produced 
about 1925 and afterwards. Before 1925, the C-exercises were accompanied 
by short, yet detailed, narratives that guided the students through observa-
tions, manipulations, measurements, and the solutions. After 1925, these 
narratives were left out in some of the textbooks; the students had to tackle 
the exercises on their own. The illustrations in these later textbooks were 
also much fewer. However, the routine was still intact where the student 
works through a series of C-exercises before the definitions, formulas, and 
other propositions were stated. Actually, none of the textbook authors aban-
doned this routine during the period 1905-1962. 

This change of the C-exercises indicates that the meaning of the concept 
visualizability changed during the period 1905-1962. After 1925, some text-
books author considered it more important to stimulate the students’ ability 
to observe and reason on their own. Illustrations in the textbooks, on the 
other hand, were less important. 

Taken together, the most significant change of the textbooks during the 
period 1905-1962 was the modification of the C-exercises and the introduc-
tions of concepts and formulas. Thus, I think it fair to say that the methodo-
logical directives and arguments about visualizability were relevant to the 
textbook authors. This idea was something they grappled with as they au-
thored new textbooks.  

In contrast, though, there were areas where changes did not take place. As 
I mentioned above, the A-exercises occurred in the textbooks investigated in 
great numbers throughout the period 1905-1962, while very few B-exercises 
were inserted. Furthermore, if we consider the terminology in the textbooks, 
we can observe that there was some confusion throughout the period 1905-
1962. Several textbook authors did not make a clear distinction between 
geometrical objects and measures, i.e. numbers. For instance, the word ‘sur-
face’ could sometimes signified a geometrical object, but in the next sen-
tence the student was told to compute a surface, which suggests that surface 
is a number. 

This confusion about the terminology is in some sense linked to the 
methodological arguments about visualizability. The main aim for the text-
book authors was not to develop a coherent terminology by which concepts 
and formulas could be expressed; their main aim was rather to develop an 
experimental routine with C-exercises that made the concepts and formulas 
visual or concrete.    
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Part E – Geometry textbooks in Realskolan 

The supply of textbooks 
The geometry textbook offerings in the last decades of the 19th century were 
quite diversified. If we consider an inventory of textbooks in mathematics at 
Läroverken, put together by a Government school commission in 1872, the 
geometry textbooks were designed quite differently. They comprised be-
tween 100 and 300 pages. Some of them were more or less modified ver-
sions of Euclid’s Elements. Some of them included trigonometry, but also 
theories on symmetry, descriptive geometry, and practical applications. To 
what extent each book was used, at which level they were used, and on 
which program, the report does not tell. However, most of the textbooks 
denoted elementary were described as slightly modified versions of Euclid’s 
Elements, book I-IV or book I-VI.331 In the curriculum for Läroverken of 
1859, it was established that Euclid’s Elements should be used as a text-
book.332    

In 1931, another Government school commission completed a survey of 
the textbooks used in the Swedish schools. According this investigation, the 
most common geometry textbooks were the following. 

                               
331 Kommitébetänkande (1872), pp. 109-130 
332 SFS 1859:16, p. 26 
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Table 6.  
läroverk mellanskolor ensk. skolor sum

Asperén 40 57 34 131
Josephson 13 6 46 65
Vinell 11 12 27 50
Lindman 8 6 6 20
Olson 6 5 3 14
Laurin - - - 10
Others - - - 10
sum 78 86 116  
Numbers of Realskolor at Läroverken, Mellanskolor and Realskolor at Enskilda 
Läroverk (private schools) that used a particular textbook in geometry in the late 
1920’s. The numbers are based on statistics in the official report of the Schoolbook 
Commission of 1927. The report was completed in 1931.333 

Except for Olson’s textbook, the textbooks in the table above had been in-
troduced before 1905 and they were frequently being reprinted. 

Table 7.  
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1st printing 1896 1900 1898 <1872 1925
last printing 1952 1953 1935 >1927 1954
# printings 21 15 11 >19 10  

Of these authors, Vinell and Lindman followed the Euclidean selection of 
definitions, axioms, and theorems closely, even though they did change 
some proofs. They also added new definitions, axioms, and propositions. 
However, they retained the Euclidean outline with just a few alterations. In 
contrast, Asperén, Josephson, Olson and Laurin gave their textbooks alterna-
tive outlines where the theorems where arranged more thematically. How-
ever, just like Vinell and Lindman they applied the axiomatic method. 
Hence, there were no changes in that respect. 

Choosing a disposition different from the Euclidean, they were more or 
less forced to come up with new proofs, even though they did lend some 
proofs, or parts of proofs, together with constructions from Euclid. The 
common feature of the alternative textbooks, except for Laurin’s, is that they 
were based on theorems on the properties of the straight lines, perpendicu-
lars, foldings, and symmetry.  

At this point we should recall Petrini’s defense of Euclid’s Elements and 
criticisms of the contemporary geometry textbooks during the 1920’s. Con-

                               
333 SOU 1931:2, p. 106 
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sidering the tables above, his criticisms did not concern a recent attempt to 
develop new textbooks but a widespread use of a certain type textbooks. In 
this context, it is worth mentioning that Petrini edited Lindman’s in the 
1920’s. Lindman passed away in 1901. 

As a backdrop to these tables, we have the continuous expansion of sec-
ondary education during the period 1905-1962. Realskolan received an in-
creasing number of students, and new schools were started all over the coun-
try. Thus, there was not only an increasing demand for geometry textbooks; 
at the same time the teaching staffs at the new schools should choose text-
books for the first time. My point is that the introduction of alternatives to 
Euclid’s Elements may have been easier because of this. Maybe, old routines 
and habits were not as dominant in these new schools as in the older schools.  

In 1938, the government established a special textbook committee, the so-
called Statens läroboksnämnd.334 Its function was to examine the textbooks 
used in the schools and to regulate the use of textbooks in the schools. The 
work of the committee resulted in an annual list of approved textbooks. Prior 
to that, the choice of textbooks was an issue for the teaching staffs alone to 
decide upon. In January 1941, the committee’s first decree came into force. 
However, the actual list of approved textbooks was completed and published 
as early as 1935 by a special government commission. In this first list, the 
traditional Euclidean textbooks by Lindman and Vinell were removed.335 The 
textbooks by Asperén, Josephson, and Olson, on the other hand, were being 
reprinted until the 50’s.  

After 1925, we can observe two successful attempts to introduce new ge-
ometry textbooks on the market. These attempts were made by Olson and 
Sjöstedt; Olson actually introduced two textbooks, a longer version and a 
shorter version. They were successful in the sense that their textbooks were 
reprinted every second or third year. No other textbooks were reprinted with 
such frequency during the period 1930-1955. 

Table 8.  
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1st printing 1936 1925 1936
last printing 1955 1954 1952
# printings 13 10 8   

Olson 1 is the longer version. Olson 2 is the shorter version. 

The textbooks by Olson and Sjöstedt were in some respects quite different. 
Olson pointed out that he was influenced by Meyer’s and Asperén’s way of 
                               
334 Statens läroboksnämnd (1940), p. 3 
335 Statens läroboksnämnd (1940), pp. 54-59. 
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writing textbooks, which deviated from traditional outline of Euclid’s Ele-
ments and the added new theorems that included foldings and symmetry.336 
Sjöstedt, on the other hand, underscored that his intention was to follow 
Euclid as far as possible.337 In that sense, Sjöstedt continued the tradition of 
Lindman, Vinell, and Petrini. However, Sjöstedt also made some modifica-
tions which were more extensive than those of Vinell and Lindman.  

In 1947, Nyhlén – the critic of Olson’s and Sjöstedt’s textbooks – pub-
lished his own textbook in geometry. Even though it was reprinted only 
twice, it is an interesting textbook since Nyhlén has a much more experimen-
tal approach in comparison with the textbooks of Olson and Sjöstedt. More-
over, Nyhlén found that many of the Euclidean propositions and proofs 
could be omitted or simplified if measures and real numbers were introduced 
at an early stage.  

Another set of new geometry textbooks appeared during the 1950’s in 
connection with the preparations for Grundskolan. The explicit purpose of 
these textbooks was that they should be used in the experimental schools 
preceding the introduction of Grundskolan. These textbooks were written by 
Sandström/Ullemar, Sjöstedt, and Bergström. Sjöstedt’s were essentially the 
same as his previous one, while Sandström/Ullemar and Bergström chose a 
some what different approach. They put greater emphasis on explaining how 
a proof was carried out, but they did not deviate from the axiomatic struc-
ture. On some occasion, though, they used a theorem before it was proved. 
In my investigations, I have focused on the textbook by Sjöstedt. 

Lindman’s and Vinell’s editions of Euclid’s Elements 
Lindman’s textbook 
The textbook by Lindman was first published during the 1860’s or the early 
1870’s.338 He named the book The first four books of Euclid. According to 
the preface, his motive was to revise Mårten Strömer’s edition of Euclid’s 
Elements.339 Strömer’s edition was first published in 1744, and it was the first 
edition of Euclid’s Elements in Swedish.340 It was also used as a textbook in 

                               
336 Olson (1940), pp. v-vi 
337 Sjöstedt (1936), pp. 5-6 
338 I have not found a date on the first printing, but second took place in 1872. 
339 Lindman (1897), p. iv 
340 Rodhe (2002), p. 7. The same year, the Swedish edition of Clairaut’s introduction to Ge-
ometry was published. Clairaut’s textbook is very different from Euclid’s Elements; it con-
tains no proofs according to the axiomatic method, and it includes real numbers and examples 
of practical applications. 
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the secondary schools throughout the 18th and 19th centuries.341 The last edi-
tion of Strömer’s book was published in 1884.342 

In a comparison with Heath’s edition of Euclid’s Elements, Lindman in-
cluded all propositions of Euclid’s Book I and III, except for Prop.I.7. Lind-
man also retained the order of the propositions. The omission of Prop.I.7 is 
quite easy to overcome in the sense that Prop.I.7 is used only in the proof of 
Prop.I.8, i.e. the SSS congruence theorem. Hence, this change did not force 
Lindman to revise the proofs of the later propositions.   

Lindman motivated the cancellation of Prop.I.7 by saying that students 
had difficulty understanding it.343 Lindman proved Prop.I.8 in the following 
way. 

Prop. VIII  If two sides AB and AC in a triangle ABC are equal to the sides 
DE and DF in another triangle DEF and the base BC in the former is equal to 
the base EF in the later, then the triangles are congruent. 

Hypotheses: AB=DE, AC=DF, BC=EF. 

Thesis: �ABC 
 �DEF  

Move �DEF and place point E at B and EF along BC, then point F falls in C, 
since BC=EF (hyp.); give to �DEF a position such as �GBC. Since �EBC 
[sic] is the same as �DEF, in another position, then CG=DF=AC, 
BG=DE=AB, 	BGC=	D. Connect AG, which then will fall either a) on the 
same side of B and C or b) go through one of them, e.g. C or c) fall between 
B and C. 

 

a) Since AB = BG,  	BAG = 	BGA (prop.5), and since AC = CG,  	CAG = 
	CGA. If they are removed from the former, then (ax.3) 	BAC = 	BGC = 
	D. Since AB = DE, AC = DF and 	BAC = 	D, then �ABC 
 �DEF 
(prop.4).  

b) In this case it immediately follows by prop. 5, that 	A = 	G = 	D , there-
fore the triangles are congruent. 

                               
341 Nordisk familjebok (1918), p. 429 
342 According to the stack catalogue at the university library in Uppsala, Strömer’s textbook 
was printed for the last time in 1884. 
343 Lindman (1897), p. iv 
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c) Since AB = BG, then 	BAG = 	BGA (prop. 5) and since AC = CG, then 
	CAG = 	CGA . If the latter is added to the former, then (ax. 2) 	BAC = 
	BGC = 	D  and then the triangles are congruent (prop. 4).  Q.E.D  344 

Lindman also shortened some proofs by several steps by applying move-
ments of triangles. A good example of that is Lindman’s proof of Prop.I.5.  

Prop. V  The angles B and C, which stand against the equal sides of an isos-
celes triangle ABC, are equal. 

Hypothesis: AB=AC;  

Thesis: 	B=	C 

Let �ABC be moved so that it gets the position A´B´C´ where 	C’=	C, 
	B’=	B. Then �A´B´C´ is in all respects similar to �ABC, except for its 
aforementioned position. Now you can show, in the same manner as in 
prop.4345, that �A´B´C´ 
 �ABC, thus 	C´=	B; but 	C´=	C, hence 	B=	C 
(ax. 1)346. Q.E.D.347 

 

   

We can compare this to the construction and the proof in Heath’s editions of 
Euclid’s Elements. (See Appendix A) 

A detail in Lindman’s two proofs above is that the diagrams explain how 
the triangles are moved. The text does not reveal how the triangles are 
placed and without the diagram the proof is difficult to follow. Actually, 
when Lindman described how the triangle is moved, in writing, he did not 
change the order of the letters. He could he had written that �ABC is moved 
so that it gets the position A´C´B´ in order to clarify the change in position of 
the base angles. This reliance on the diagram was quite common in the text-
books investigated. We can observe it in the textbook by Vinell as well in 
the alternative textbooks by Asperén and Olson. Quite often they did not 
explain in writing how the diagrams were moved. A textbook author who 
deviated from this praxis was Sjöstedt. In his textbook, first printed in 1936, 

                               
344 Lindman (1897), pp. 16-17 
345 Prop.4 is the SAS congruence theorem, i.e. Prop.I.4 in Euclid’s Elements, Heath’s edition. 
The procedure Lindman was referring to is applied in Euclid’s Elements, Heath’s edition. 
[Heath (1956), vol. 1, p. 247-248] 
346 Axiom 1: “They which are equal to one and the same are mutually equal.” [Lindman 
(1894, p. 10] 
347 Lindman (1897), pp. 15-16.  
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the movements of diagrams were specified in words. I exemplify this in the 
chapter on Sjöstedt’s textbook.   

Another aspect of Lindman’s proof of Prop. V is that it is hard to follow 
how he reached the conclusion that the base angles are equal. He explained 
how the triangle was moved a first time, but then he left out the part were the 
triangles are placed on each other; he merely referred to the proof of the 
previous theorem, the SAS congruence theorem.348 By placing the triangles 
on each other, he obtained that � A´B´C´ 
 � ABC, which entails that 
	C´=	B.  However, it is not the establishment of congruence that is the 
critical feature of the proof. The important premise is that � ABC is an isos-
celes triangle, i.e. AB = AC, but Lindman’s proof does not draw attention to 
this circumstance nor does it show how the premise is used.  

Moreover, since we are dealing with same triangle, but in another posi-
tion, the conclusion that � A´B´C´ 
 � ABC may appear strange. Especially, 
when Lindman did not change the order of the letters, he wrote � A´B´C´ 
 � 
ABC. A change of letters to � A´C´B´ 
 � ABC can make the new position 
more apparent. 

We can compare Lindman’s proof to Sjöstedt’s, where triangles are 
placed on each other and the premise AB = AC is used explicitly. 

Given: In �ABC, AB = AC. 

Claim: 	B=	C. 

Proof: The triangle is lifted up from its plane, turned around and replaced so 
that 	A comes in its former position, but its legs have changed position with 
each other. 

 

Then point B falls in the former position of point C and point C falls in the 
former position of point B, since AB = AC (given). 

Side BC then falls on CB’s former position. (ax.1)349 

                               
348 In the proof of Prop.IV, Lindman applied the same procedure of superposition that we find 
in Euclid’s Elements, Prop.I.4, Heath’s edition. [Heath (1956), pp. 247-248] 
349 Sjöstedt’s Axiom 1: “Through two points, only one straight line can run.” [Sjöstedt (1936), 
p. 12] 
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	B then covers the former position of 	C. 

 	B=	C  (ax.11)350 

Q.E.D.351 

If we return to Lindman’s proof of Prop. V, it is especially interesting in 
relation to Petrini’s appeal about improving the level of precision in the ge-
ometry textbooks; but also in relation to his argument that a high level of 
precision made the proofs easier for the beginner. When Lindman’s textbook 
was republished in 1922, after Lindman had passed away, Petrini had re-
edited some parts. He did change the order of the letters in the proof of 
Prop.V, he wrote � A´C´B´ 
 � ABC, which can make the proof easier to 
follow. However, he did not describe the second part of the proof when the 
triangles were placed on each other.352 Hence, Petrini did not draw attention 
to the important premise AB=AC and how it was applied. 

Asperén, on the other hand, inserted another version of this proof where 
he describe the whole process of placing one of the triangles on the other, a 
proof quite similar to Sjöstedt’s. 353   

Let us return to Lindman’s textbook once again. Lindman not only moved 
triangles more often than Euclid, he also moved circles. In this way, Prop.I.2 
also got a shorter proof.  

To draw a straight line from a given point A that is equal to a given straight 
line BC. 

Draw from A, at will, a straight line AG and place thereafter from A the line 
BC (Post. 2; Ax. 8). This is done by means of the tool mentioned in Def. 16, 
that is called circle or compass, whose legs are put at B and C. When one leg 
is moved to A, then the other determines the sought point G [sic] on AG. 
This is apparently the same thing as drawing a circle with the centre at A and 
the radii =BC (Post. 3).354 

However, Lindman did include the Euclidean proof of Prop.I.2 as well. 
Even though Lindman cared for the Euclidean order of the theorems, this 

did not prevent him from adding new theorems. These were inserted as soon 
as the required theorems for the proofs had been established. In order to re-
tain the Euclidean numbering of the theorems, the new theorems were given 

                               
350 Sjöstedt’s Axiom 11: ”Quantities that can cover each other are equal in size” [Sjöstedt 
(1936), p. 14] 
351 Sjöstedt (1936), pp. 21-22. According to Heath (1956), this proof was by no means an 
innovation of the late 19th century. Heath (1956) links it to a proof of Pappus, 300 AD. [Heath 
(1956), vol. 1, pp. 254-255 ] 
352 Lindman (1922), p. 27 
353 Asperén (1928), p. 36; Sjöstedt (1936), pp. 21-22 
354 Lindman (1897), p. 13 
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an index letter. Take for instance Prop.XXXIV.B that was inserted between 
Prop.XXXIV and Prop.XXXV.  

The straight line that joins the middle point of the hypotenuse in a right an-
gled triangle and the point of the right angle equals half the hypotenuse.355 

Regarding the definitions, postulates, and axioms, they were almost the same 
as those we find in Heath’s edition of the Elements. Lindman added a few 
new definitions, and the fourth and the fifth postulate were put among the 
axioms. He also added two axioms about magnitudes and inequalities and 
two axioms about magnitudes, equalities, multiples, and quotes.356 A fifth 
new axiom concerned the properties of straight lines. 

Two straight lines cannot enclose any space [sic], thus they do not form a 
figure. 

Thereof follows that two straight lines, which have two points in common, 
coincide.357  

Vinell’s textbook 
If we compare Lindman’s and Vinell’s textbooks, Vinell used the same defi-
nitions, postulates, and axioms as Lindman. He too named his textbook The 
first four books of Euclid. One difference, though, was that Vinell attached 
visual explanations to the definitions. 

2. 3. A stroke, drawn along a ruler, is in common language called a line or 
more carefully a straight line. The finer the stroke is made, the more it be-
comes a mathematical line, which however does not have any width or 
thickness whatsoever, but length only; it can therefore merely be perceived 
by thought.358 

Vinell, too, retained the Euclidean disposition of the propositions, but 
Prop.I.7 was excluded and Prop.I.5-6 was moved to follow upon Prop.I.17 
and Prop.I.18 respectively. Moreover, Prop.III.13 was inserted between 
Prop.III.10 and 11, and Prop.III.23 was excluded. Even though these propo-
sitions had been relocated, they were still given the original Euclidean num-
bering.  

Also in Vinell’s textbook, we can observe attempts to make the proofs 
shorter and less complicated. In the proof of Prop.I.2, he applied rigid 
movements of circles in the same way Lindman did. In contrast, though, 
Vinell excluded the original Euclidean proof. 

                               
355 Lindman (1897), p. 39 
356 Ge exempel på dessa. 
357 Lindman (1897), p. 11 
358 Vinell (1898), p. 9. The bold types are Vinell’s. 
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Vinell also ran into difficulties when he modified the proofs. Since 
Prop.I.5 was relocated, it appeared after Prop.I.16. He had to accomplish a 
new proof for Prop.I.8, i.e. the SSS congruence theorem. 

Prop. 8  If all three sides in a triangle are equal to each of the sides of another 
triangle, then the triangles are congruent. 

 

I assume that ABC and DEF are two triangles that have AB=DE, AC=DF and 
BC=EF, and I claim that �ABC 
 �DEF. For the sake of the proof I begin to 
make a construction. I take E as a center and I draw a circle, whose periphery 
also runs through D, and I take F as a center to another circle whose periph-
ery also runs through D, a point that becomes one of two intersections of the 
two peripheries; the other, H, always falls on the other side of EF (compare 
def. 18, comment. 3). Thereafter I imagine that I place �ABC on �DEF in 
such a way that the point B falls on the point E and the base BC falls along 
the base EF; then the point C must fall on the point F, since BC is assumed = 
EF. When now the point B falls on the center E, then the point A falls some-
where on the periphery GDH, since BA is assumed to = the radii ED; but 
when the point C falls on the center F, then the point A must also fall on the 
periphery IDH, since CA is assumed to = radii FD. Thus, when the point A 
shall be lie on both peripheries GDH and IDH, then it must lie on their com-
mon point D, but then also the side BA must coincide with the side ED, since 
they are straight lines, that begin in the same point and end in the same point, 
and for the same reason also the side CA must coincide with the side FD. 
Therefore, both triangles meet each other parts or they are congruent.359 

An important part of this proof is the fact that the two circles intersect in two 
and only two points; otherwise it is not certain that the sides of the two trian-
gles coincide. Vinell was here referring to a comment to the definition of a 
circle. In the comment he established that two circles, which do not touch 
and do not coincide, have two intersections.360 However, he did not say that 
there are exactly two intersections. Even more importantly, the proposition 
on two circles having at most two intersections is a theorem in Euclid’s Ele-
                               
359 Vinell (1898), pp. 24-25. The italics and bold types are Vinell’s. In this proof, Vinell is 
much more careful in his writing than in the later proofs. In the later proofs, he is not as ex-
plicit about why he makes certain constructions. 
360 Vinell (1898), p. 11 
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ments, i.e. Prop.III.10. Thus, Vinell’s proof of Prop. 8 is not really a proof 
since he used a theorem not yet proven. However, the status of the proposi-
tion is ambiguous since he did not attach a proof to Prop.III.10.       

The alternative textbooks of Asperén and Olson 
There are a lot of differences between Asperén’s and Olson’s textbooks, on 
one hand, and Lindman’s and Vinell’s, on the other. In the subsequent sub-
chapters, I give some examples of such differences, but also some similari-
ties.  

An outline of Asperén’s textbook 
Compared to how Lindman and Vinell kept almost every definition, axiom 
and proposition of the Elements along with the disposition of the theorems, 
Asperén made a clear break with this tradition on several points. 

1) The basic concepts were introduced in a preliminary chapter on visu-
alizations called Åskådningslära. In this chapter the students were supposed 
work through series of exercises and become aware of geometrical objects 
and the terms used to differentiate between them. The exercises in this chap-
ter were similar to the exercises in the textbooks at Folkskolan where the 
students were supposed to observe or manipulate real objects or illustrations. 

2) There were no explicit lists of definitions. But Asperén did include an 
intial list of axioms, but these concerned quantities in general, not lines and 
surfaces in particular. The term postulate was not used. 

3) He did, however, include some “self-evident propositions” or “axioms” 
regarding straight lines; these were submitted as the first seven propositions, 
but without proofs. The propositions were: 

Prob.1 To draw a straight line through a given point. 

Prob.2  To draw a straight line through two given points.  

Th.I.a   Through two points, only one straight line can be drawn. 

Cor.1 Two straight lines cannot intersect each other in more than one 
point. 

Cor.2 If two straight lines have two points in common, they coincide. 

Th.I.b The straight line is the shortest distance between two points. 

Prob.3 To construct a) the sum b) the difference of two given straight lines. 
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Th.II.a If the legs of an angel are placed in a straight line (in different direc-
tions), then the angle is 2R.   

Th.II.b If the angle =2R, the legs of the angle lies in a straight line.361 

4) The outline of the book was thematic and divided into the following 
themes: “Self-evident proposition (axioms)” -- “Straight lines, angles and 
triangles” -- “Parallel lines and parallelograms” -- “Geometrical positions” -- 
“The circle” -- “Diagrams with equal surfaces” -- “Regular polygons” -- 
“Uniform mapping”. 

5) Asperén added some new propositions and the Euclidean order of the 
propositions was set aside. In Appendix D, I have inserted a list of the theo-
rems in Asperén’s first chapter “Straight lines, angles, and triangles”. Here, 
you can see which Euclidean propositions that he kept. Moreover, different 
sets of theorems are not dependent of each other. Hence, the sets of theorems 
IV.a-d, V.a-c, VIII.a-d and IX.a-X.b do not necessarily come in this order.  

Asperén’s theorems on straight lines, perpendiculars and 
foldings 
The initial theorems III.a-b and IV.a-d concerned straight lines and perpen-
diculars. Theorem III.a was important since, together with foldings, it served 
as a substitute for the SAS congruence theorem in some proofs. This theo-
rem is in some sense a special case of the SAS congruence theorem where 
the adjacent angles equal a right angle. The difference is that the triangles 
are reversed.   

III.a) If a straight line is perpendicular to another [straight line] and the later 
is bisected by the perpendicular, then each point on the perpendicular is 
placed on equal distances from the endpoints. 

 

Given: CD�AB; CE=CF; G is an arbitrary point on CD. 

Claim: GE=GF. 

                               
361 Asperén (1939), pp. 24-26. The bold types are Asperén’s 
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Proof: If the figure is folded along CD, then CE will fall on CF as, 
	GCE=	GCF , and E will fall on F, as CE=CF. Since E falls on F and the 
point G remains in its position, it follows that GE=GF.362 

This theorem was often applied in the subsequent theorems. A peculiar cir-
cumstance is that the exact formulation in the theorem was often not used in 
the proofs. Instead the following proposition was used implicitly:  

If a point A lies on the same distance from the points B and C, then A lies 
on the midpoint perpendicular to the straight line BC.363  

This is a consequence of the last part of the Theorem III.a: “each point on 
the perpendicular is placed at equal distances from the endpoints.” However, 
Asperén did not discuss this aspect of Theorem IIIa. Neither did he give 
explicit references to the theorem in the proofs. Take for instance the prob-
lem of bisecting an angle. Here, Theorem IIIa was used in the second sen-
tence of the proof. 

7. To bisect an angle. 

Given: 	A. 

Sought: The straight line that bisects 	A. 

Solution: Take A as the centre to a circle with an arbitrary radii that inter-
sects the legs of the angle in B and C. Then take B as a centre to a circle, 
whose radii is > half the distance between B and C, and take C as a centre 
to a circle with the same radii; these circle lines intersect each other in D. 
Draw AD.  

Claim: AD bisects 	A. 

 

                               
362 Asperén (1939), p. 27. Th.III.b) was formulated in the following was. “Each point not on 
the perpendicular is closer to the endpoint at the same side [of the perpendicular].” 
363 This consequence was formulated and applied by Olson in his textbook, which I show in 
the next section. 
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Proof: Connect B and C. BC intersects AD at O. According to the construc-
tion, A is located at equal distances from B and C; the same is valid for the 
point D, then AD is a midpoint perpendicular to BC. If the diagram is folded 
along AD, then OC falls on OB, since 	AOC = 	AOB, and C coincides with 
B, since OC = OB. Since A remains in its position and C coincided with B, 
then AC coincides with AB and thus the angles at A will cover each other and 
they are therefore equal.364 

Moreover, in the proof, the inference in the second sentence is not correct. 
The fact that A and D are located at equal distances from B and C means that 
A and D lie on the midpoint perpendicular to the line BC. What Asperén did 
not explain and justify is that the midpoint perpendicular to BC coincides 
with the line AD. 

Theorem III.a was also applied in theorems on circles, for instance in the 
last part of the proof to Theorem XXXVIII. 

XXXVIII. Tangents that fall on a circle from a point outside a circle are 
equal; the straight line from the centre to the point outside the circle bisects 
the angle between the tangents and it is the midpoint perpendicular to the 
straight line between the points of contact. 

 

Given: AB and AB1 are tangents to the circle O in B and B1 . 

Claim: 1) AB = AB1  

 2) 	BAO = 	B1AO 

 3) BC = B1C, AC�BB1 . 

Proof:  �BAO 
 �B1AO (SSA congruence theorem365) 

                               
364 Asperén (1939), p. 30 
365 Asperén (1928), p. 42: ”If in a triangle two sides and one opposite angle equal the corre-
sponding elements in another [triangle] and in addition the other opposite angles are of the 
same kind [obtuse, right or acute], then the triangles are congruent.”    ~”Om två sidor och en 
motstående vinkel i en triangel äro lika med motsvarande element i en annan och därjämte de 
övriga motstående vinklarna är av samma slag, så äro trianglarna kongruenta.” 
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 AB = AB1 and 	BAO = 	B1AO. 

Since AB = AB1 and OB = OB1, AO is the midpoint perpendicular to 
BB1.366 

Neither in this proof did Asperén explain that AO and the midpoint perpen-
dicular to BB1 coincide. 

Since Asperén from time to time did not care to make explicit references 
to Theorem IIIa, or to explain the consequence of this theorem he was using, 
or to explain and justify that two lines coincide, it appears as if he considered 
these parts of the proofs to be self-evident. At this point, we should recall 
Olson’s arguments about leaving out axioms and self-evident propositions in 
order to not confuse the students with abstract formulations. We should also 
keep in mind Meyer’s proposal to use proofs that revealed the “nature” in the 
theorems. Meyer argued that proofs that were based on foldings or symmetry 
were more in tune with the “real grounds” or the “nature” of the theorems.367 
Perhaps, Asperén had something similar in mind as the authored his text-
books.  

An important aspect of having a substitute for the congruence theorems is 
the importance of the latter in Euclid’s Elements. To Sjöstedt, for instance, 
this was very important.  

The most distinctive feature of this course [the Euclidean] can be said to be 
the central position of the theory of congruency. 368 

Moreover, if we also consider the final exams in mathematics in Realskolan, 
see Part E of this dissertation, the congruence theorems were useful in the 
solutions to several of the geometrical problems. Thus, when Asperén in-
serted these theorems, they were not an innovative detail that facilitated a 
reorganization of the theorems. He truly got to the core of the geometry 
courses. 

Olson’s theorems on straight lines, perpendiculars, foldings and 
symmetry 
Olson used the same basic propositions on straight lines and perpendiculars 
as Asperén did. They were denoted Prop. 4a and b, and they were proved in 
the same way. However, Olson added a comment to these theorems, the 
comment that Asperén did not provide. 

                               
366 Asperén (1939), pp. 70-71. This theorem is not included in Euclid’s Elements, but we find 
in both Olson’s and Sjöstedt’s textbooks. 
367 See Part C for the arguments of Meyer and Olson. 
368 Sjöstedt (1936), p. 7 



 140 

From proposition 4 (a and b) follows that each point that lies at equal dis-
tances from the endpoints of a straight line must lie on the midpoint perpen-
dicular of the straight line.369 

He also made explicit references to this comment in the subsequent proofs; 
see the proof of Olson’s Prop.30 below. In this respect, Olson was more 
formal than Asperén. Here we can notice that Olson’s textbook was first 
printed in 1925. Some years earlier, in 1918, Petrini had published an article 
where he urged textbooks author to make the textbooks more exact.370 So 
even though Olson did not share Petrini’s view on elementary geometry 
instruction in general, Olson did not ignore arguments about the need for 
more exact textbooks.  

Let us return to Olson’s textbook again. In connection to Prop.8, Olson 
introduced the symmetry concept, a concept he explains and defines by 
means of foldings and congruence. 

If, without conversion, you move two convertible congruent figures in the 
plane, so that two corresponding sides  

 

coincide and the figures are turned in the same direction, then they together 
form one figure that has the common side as a line of symmetry or an axis of 
symmetry. A symmetry line to a figure is a line so constituted that if one part 
of the figure is folded about this line, then the two parts of the figure will co-
incide completely. If for example the figure EFGH above is turned around in 
the plane in such a manner that EH coincides with AD, then it attains the po-
sition AF´G´D´, and the figure ABCDG´F´ is formed, which has AD as the 
symmetry line.371 

Considering Meyer’s argument that proofs that were based on foldings or 
symmetry should be more natural, we can observe that Olson explains the 
meaning of a symmetry line by stating that two figures are congruent. Thus, 
he is appealing to the reader’s understanding of congruence in order to ex-
plain symmetry. Following Meyer’s arguments, it should perhaps be the 
other way around. However, Olson did explain congruence by referring to 
foldings.  
                               
369 Olson (1940), p. 11: “Av sats 4 (a och b) följer, att varje punkt, som ligger lika långt från 
en sträckas ändpunkter, måste ligga på sträckans mittpunktsnormal.” 
370 See Part C of this dissertation for Petrini’s arguments. 
371 Olson (1940), p. 15 
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The symmetry concept was then inserted in Prop. 8. 

Prop.8  If an arbitrary point on the midpoint perpendicular to a straight line is 
joined with the endpoints of the straight line, a triangle is generated that has 
the midpoint perpendicular as a symmetry line. 

 

Assumed: C is an arbitrary point on CD, which is the midpoint perpendicular 
to AB. 

Claim: CD is the symmetry line to �ABC. 

The proposition is proved in 4a. 

The parts of the triangle are congruent. In particular we point out that both 
angles at C are equal; moreover 	A = 	B.372 

The proposition is proved in 4a since it is shown in the proof that �ADC 
coincides with �BDC as �ADC is folded around DC (See Asperéns proof of 
Th.III.a above). According to the definition of a symmetry line, DC is then a 
symmetry line. 

Olson used this Prop. 4 and 8 in various proofs. In comparison to As-
perén, he extended the applications of the theorems on foldings and symme-
try. One example is the proposition on base angles in isosceles triangles. 

Prop.30.  If two sides in a triangle are equal, then the opposite angles are 
equal. 

 

Assumed: In �ABC, AB=AC. 

                               
372 Olson (1940), p. 16 
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Claim: 	B = 	C. 

Proof construction: Join A and the midpoint D of the side BC. 

Proof: A lies on the same distance from B as from C (assumed); thus A lies on 
the midpoint perpendicular of BC. (Prop.4) [Here is Olson using the com-
ment on Prop.4 that I mention above.] 

So does D. (Construction) 

Therefore, AD is the midpoint perpendicular to BC. (Prop.4). 

 AD is the symmetry line to �ABC (Prop.8) 

 	B = 	C.373 

I think this proof is a good example of how Olson replaced the Euclidean 
congruence theorems by his Propositions 4 and 8. Prop.30 could easily have 
been proved by means of the SSS congruence theorem. After having con-
structed the midpoint D and drawn the straight line AD, we have two trian-
gles ABD and ACD with mutually equal sides. By the SSS congruence theo-
rem, which was Prop.11 in Olson’s textbook, we know that the base angles 
are equal. I am not fully convinced that Olson’s proof was easier for the 
students to follow. 

In some sense, Olson must have considered Props. 4 and 8 more funda-
mental than the Euclidean congruence theorems. Also in the proof of the 
congruence theorems SSS and SSA, Prop.4 and Prop.8 were applied. How-
ever, the SAS congruence theorem was proved by means of superposition in 
same manner as in Euclid.374  Here is the proof of the SSS-congruence theo-
rem.    

Prop.11. Theorem. If the three sides of a triangle are equal to the sides of an-
other triangle, the triangles are congruent. 

 

Assumption: In �ABC and �DEF, AB=DE, AC=DF, BC=EF. 

                               
373 Olson (1940), p. 36 
374 Olson (1940), p. 20; Heath (1956), vol. 1, pp. 247-248.  
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Claim: �ABC 
 �DEF. 

Proof construction: Move �DEF so that the side EF coincides with the side 
BC and put �DEF in such a manner that the point D gets the position D´. 
Draw AD´. 

Proof:  AC=DF (Assumption) 

 But D´C is the same line as DF. 

  AC=D´C. 

 Moreover, we got AB=DE (assumption) 

 But D´B is the same line as DE. 

  AB=D´B. 

Thus, C lies on the same distance from A as from D´, i.e. C lies on 
the midpoint perpendicular to AD´. (Prop.4) 

The same goes for the point B.  [�] 

From this follows, BC is the midpoint perpendicular to AD´ (Prop.4, 
comment).  

 BC is the symmetry line to �AD´B as well as �AD´C (Prop.8). 

From this follows immediately, �ABC 
 �D´BC. 

But �D´BC is �DEF in another position. 

 �ABC 
 �DEF (Ax.9)375 

A detail in the proof is that Olson relies on the illustration as he described 
the position to which the triangle EDF is moved. Without the diagram, you 
have trouble following the constructions and the proof. 

Another detail is that every inference in the proof was not justified cor-
rectly. The conclusion that BC is the midpoint perpendicular to AD´ is based 
on a comment to Prop. 4. 

Since a straight line is fully determined by two points (page. 4), you then 
need to seek only two points in order to construct the midpoint perpendicular 

                               
375 Olson (1940), p. 18. Olson’s Axiom 9: “Hereby we assume as self-evident that lines and 
figures that we imagine to change position in space thereby do not undergo any kind of 
change with respect to shape and size” [Olson (1940), p. 15] 



 144 

of a straight line, points that lie at equal distances from the endpoints of the 
straight line, and then draw the line that is determined by these two points.376  

However, from this comment it does not follow that the midpoint perpen-
dicular to AD´ coincides with the original line BC. Because, when Olson got 
to �, he had thus far proven that the points B and C lies on the midpoint 
perpendicular to AD´, not that the straight line BC is the midpoint perpen-
dicular to AD´. 
 

 

In order to do so, he should have had an axiom that established the property 
that through two points, one and only one straight line can run. Olson did 
mention this property in a discussion on the properties of points and straight 
lines, but he did not formulate an explicit axiom.377 Hence, Olson did not 
enhance all parts of Asperén’s textbook with respect to rigor and exactness. 
Moreover, I think that the proof of Prop.11 is a good example of what Olson 
meant by putting pedagogical requirements before scientific. I am now refer-
ring to Olson’s argument about avoiding axioms and self-evident proposi-
tions that may confuse the students.378 

Asperén and Olson and movements 
In comparison to Lindman and Vinell, both Asperén and Olson applied new 
types of movements. In the proof of the propositions on straight lines and 
perpendiculars, we can observe that both Asperén and Olson applied fold-
ings. They also applied movements when figures were lifted and turned 
around. Indeed, in the debate in the journal Elementa, Olson argued that 
movements should be used generously in connection with elementary ge-
ometry instruction.379   

                               
376 Olson (1940), p. 11: ” Emedan en rät linje är fullt bestämd av två punkter (sid. 4), behöver 
man för att konstruera en sträckas mittpunktsnormal blott söka två punker, som var för sig 
ligga lika långt från sträckans ändpunkter, och sedan draga den av dessa två punkter bestämda 
räta linjen.” 
377 Olson (1940), p. 11 
378 See Part C for Olson’s arguments. 
379 See Part C for Olson’s arguments. 
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In the proof on parallel lines and alternate angles, Prop.I.27 in the Ele-
ments, Asperén and Olson introduced movements of open figures. Recall 
that Lindman and Vinell moved only closed figures, such as triangles and 
circles. 

Prop.17. Theorem. If two straight lines are intersected by a third and a pair of 
alternate angles is equal, then the first two lines are parallel. 

 

Assumption: The lines LR and LS are intersected by the line EF, and the al-
ternate angles u and v are equal. 

Claim: LR // MS 

Proof: 	 u = 	 v    (assumption) 

	 t is a supplement angle to 	 u   (prop 2) 

	 x is a supplement angle to 	 v   (prop 2) 

  	 t = 	 x  

 

If one considers the diagram cut along EF and then turns the left (patterned) 
picture LEFM around in the direction of the arrows, as the sketch suggest, 
then one gets it to coincide completely with the right (unpatterned) picture 
SFER. Because, if the left picture is turned in such a manner that point F in 
that picture falls in E in the right picture and E in the left picture falls in F in 
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the right picture, then the line FM falls along ER, since 	 v = 	 u  (assump-
tion) and the line EL along FS, since 	 t = 	 x (recently proven) 

Should then one of the two pictures LEFM and SFER be closed, then the 
other also has to be closed, i.e. if the straight lines LR and MS should come 
together (meet) in one direction, then they must come together also in the 
other direction. However, since it is impossible that two straight lines meet at 
more than one point, it follows that the two pictures LEFM and SFER are 
open, i.e. the lines LR and MS do not meet in either direction, or LR // MS.380 

By allowing movements of open figures, Asperén and Olson could change 
the outline of the theorems more freely. Take for instance the proof of Ol-
son’s Prop.17 above. Both Asperén and Olson merely had to use one theo-
rem in their proofs, the theorem on supplement angles. If we backtrack to 
Lindman’s proof of Prop.I.27, he needed the following theorems in Book I: 

16, 15, 13, 11, 10, 9, 8, 5, 3, 2, and 1 

Thus, the allowance of more types of movements and more types of objects 
being moved made it easier to accomplish a new outline of the theorems. 
Moreover, Prop.I.16 did not have to be included, a theorem that in some 
sense becomes superfluous when the students learn about Prop.I.32 and the 
fact that the exterior angle equals the sum of the interior and opposite angles. 

Prop.I.16. In any triangle, if one of the sides is produced, then the exterior 
angle is greater than either of the interior and opposite angles.381 

Prop.I.32. If a side of a triangle is produced, then the exterior angle equals the 
two interior and opposite angles. And the sum of the three interior angles of 
the triangle equals two right angles. 

The exclusion of Prop.I.16 is another example of how Olson put pedagogical 
requirements before scientific. From a scientific point of view, Prop.I.16 is 
important since it applies for non-Euclidean geometries; which is not the 
case with Prop.I.32, since the proof requires the parallel postulate. However, 
non-Euclidean geometries were never a part of the courses and if we once 
consider the final exams students managed with just knowing Prop.I.32. 
Hence, as soon as Prop.I.32 had been established, students did not need 
Prop.I.16 to solve problems.  

A difference between Olson and Asperén was that Olson included an ex-
plicit axiom on movements.  

                               
380 Olson (1940), pp. 25-26 
381 Vinell (1898), p. 31 
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Hereby we assume as self-evident that lines and figures that we imagine to 
change position in space thereby do not undergo any kind of change with re-
spect to shape and size (the axiom of movements, ax. 9).382 

Olson did not, however, insert this axiom among the other axioms at the very 
beginning of the textbook. It was inserted in connection with the congruence 
theorems SSS and SAS.  

Asperén and Olson and the reliance on illustrations and spatial 
intuition 
In comparison to Asperén’s textbook, Olson’s treatment of school geometry 
is a bit more formalized. He formulated consequences of theorems that As-
perén had tacitly assumed. He inserted an axiom on movements, and he de-
scribed the properties of a symmetry line, even though he did not explain 
these properties via a formal definition or an axiom. Olson’s axiom of 
movements was also an innovation in relation to the textbooks of Lindman 
and Vinell. Thus, Petrini’s appeal to the textbooks authors to enhance the 
level of rigor, expressed in the early 1918, seems to have influenced Olson 
as well; even though they did disagree on several points. (See Part C of the 
thesis.) If we consider a passage in Olson’s foreword, he directly pointed to 
Asperén and not Petrini as a source of inspiration.  

The book is to be considered a more consistent attempt to apply that which 
the author has found advantageous in these textbooks. To be mentioned in 
particular are the textbooks of K. Asperén, O. Josephson, and A. Meyer. 383 

However, despite the axiom on movements and the explicit formulation of 
the properties of symmetry, Olson relied on illustrations when he described 
the results of the movements. Without the illustrations, the reader cannot 
follow the proofs; take for instance Prop.11 (SSS congruence theorem) 
which is displayed above. Hence, on this point, Olson’s textbook did not 
deviate from the textbooks of Vinell and Lindman. As a matter of fact, As-
perén’s proofs were more explicit in this respect; from his formulations it is 
clear where the object is placed. As I see it, this difference is linked to the 
fact that Asperén simply placed objects on top of other objects. Both Lind-
man and Olson also placed objects at the side another object. Moreover, just 
like Asperén, Olson did not justify all his inferences in the proofs. Also in 
this respect, he relied on the illustrations and spatial intuition.  

In contrast, Sjöstedt provided a textbook that gave explicit descriptions 
regarding how objects were placed. He did insert illustrations, but when he 

                               
382 Olson (1940), p. 15. The italics are Olson’s. This was Olson’s axiom of movements. 
383 Olson (1940), pp. v-vi 



 148 

moved objects, he also described, in words, how the objects were placed in 
relation to each other.    

Sjöstedt’s textbook 
As mentioned above, Sjöstedt considered the Euclidean course to be a role 
model when authoring a textbook in geometry. However, the adherence to 
Euclid had to be weighed against pedagogical requirements. 

My position is that we should keep the essentials of Euclid’s course and pre-
sent in such a manner that no justified pedagogical requirements are set aside. 
… The course [of Sjöstedt’s own textbook] is altogether that of Euclid; the 
textbook could therefore – if one so wishes – be seen as an abridged and re-
vised edition of Euclid.384 

In practice, this meant that he preserved the ordering of the propositions in 
the Elements to some extent, but by far not as closely as Lindman and Vinell 
did. Some propositions were left out, some new ones were added and the 
outline was changed. Sjöstedt also arranged the propositions thematically. In 
Appendix E, the propositions in the first chapter of Sjöstedt’s textbook are 
listed.  

Even though the changes were fewer and less radical in comparison to 
Asperén’s and Olson’s use of propositions on foldings and symmetry, Sjöst-
edt had to come up with new proofs, since the order of the theorems was 
changed. His approach to this problem was to use the congruence theorems 
more often. This was an essential concept to Sjöstedt; it was the core of a 
Euclidean course in geometry. 

One should be able to say that the most characteristic feature of this course is 
the central position of the theory of congruency. The first and second congru-
ence theorems are inserted among the first propositions and are thereafter 
consequently applied.385 

Sjöstedt also introduced new types of congruence theorems that required 
movements of other types of figures than only triangles. He also allowed 
movements where figures were turned over. 

Another deviation from the Elements concerns axioms; Sjöstedt consid-
ered the changes of geometry at a scientific level so fundamental that even 
the axiomatic system in an elementary textbook had to be modified.386  

                               
384 Sjöstedt (1936), pp. 5-7 
385 Sjöstedt (1936), pp. 6-7 
386 Sjöstedt (1936), pp. 5-6 
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Sjöstedt’s introduction of concepts and axioms 
In comparison to the other Swedish textbooks of this time, Sjöstedt’s intro-
duction of axioms and basic concepts is most similar to Hilbert’s style in the 
Grundlagen der Geometrie. Sjöstedt underscored that the point, the straight 
line, and the plane are the three most important concepts in geometry. These 
concepts were the simplest and therefore also impossible to define. Conse-
quently, he did not present any kind of explicit definition of these concepts. 
Nor did he give any concrete examples, for instance a ruler or a table sur-
face, which we find in Asperén and Olson. Such kinds of explanations were 
absent throughout the textbook.  

The properties of points and straight lines were given in three axioms. 

Axiom 1. Through two points, only one straight line can run. 

Axiom 2. Through a point outside a straight line, only one straight line can 
run parallel to the latter. 

Axiom 3. If a distance in a figure changes size from one value to another, 
then it runs through every value between these.387 

After these axioms, Sjöstedt added seven axioms that treated quantities in 
general and the relations equality, greater than, smaller than and the opera-
tions increase and decrease. (See Appendix C) The eleventh and last axiom 
only concerned geometrical magnitudes and congruency. 

Axiom 11. Quantities that can cover each other are equal in size. 

However, Sjöstedt did not include any axiom on movements, although he 
applied such on several occasions. We may compare this to Hilbert’s list of 
axioms, where such axioms are included. In the debate in Elementa in the 
late 1930’s, Nyhlén considered this to be a problem. Sjöstedt’s responded 
that since such an axiom was not needed for the logical deductions, it should 
not be included in the textbook.388 

Nor did Sjöstedt include any axioms that corresponded to the first three 
Euclidean postulates on the generation of straight lines and circles. Through 
out the textbook, he tacitly assumed the possibilities of doing such construc-
tions. He also assumed the possibility of moving straight lines and of cutting 
off a shorter straight line from a greater. The possibility of these construc-
tions is established in Prop.I.2 & 3 in the Elements.  

                               
387 Sjöstedt (1936), pp. 12-13 
388 See Part C of this dissertation for the arguments of Nyhlén and Sjöstedt on this issue. 
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Congruence theorems, movements and spatial intuition in 
Sjöstedt’s textbook 
As I have pointed out above, Sjöstedt considered the congruence theory to be 
the core of the Euclidean course. The most important propositions in this 
respect were the congruence theorems SAS and SSS; apart from the axioms, 
they were used most often. Sjöstedt also pointed out that one advantage of 
applying the congruence theorems as much as possible was that foldings 
were avoided.389 However, Sjöstedt did use movements where figures were 
turned around or converted. The proposition on base angles in an isosceles 
triangle was proved in this manner (Prop.I.5 in the Elements), just as As-
perén did. 

The SSS congruence theorem was also proved by means of this type of 
movement.  

If each three sides in a triangle are equal to the sides in another triangle, then 
the angles are congruent. 

Given: In �ABC and �A´B´C´, AB = A´B´, AC = A´C´, BC = B´C´. 

Claim: �ABC 
 �A´B´C´ 

 

Proof: Move �ABC in such a manner that point B falls on point B´ and the 
side BC falls along the side B´C´ and point A falls in a point A´´ on the oppo-
site side of B´C´ against point A´.  

The point C falls on the point C´, since BC = B´C´  (given). 

Draw A´A´´. 

                               
389 Sjöstedt (1936), p. 7 
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Now A´´B´ = AB  (the same line in different positions) 

But AB = A´B´  (given) 

    A´´B´ = A´B´   (ax. 4) 

	 B´A´A´´ = 	 B´A´´A´  (prop. 5)    [prop.5: the base angles in an isosceles 
triangle are equal] 

Moreover,  A´´C = AC   (the same line in different positions) 

But AC = A´C´   (given) 

     A´´C´ = A´C´  (ax. 4) 

 	 A´´A´C´ = 	 A´A´´C´  (prop. 5) 

Now, we have proven that 

	 B´A´A´´ = 	 B´A´´A´   and that 

	 A´´A´C´ = 	 A´A´´C´ 

   	 B´A´A´´ + 	 A´´A´C´ = 	 B´A´´A´ + 	 A´A´´C´   (ax. 7) 

or  	 B´A´C´ = 	 B´A´´C´ . 

But 	 B´A´´C´ = 	 BAC  (the same angle in different positions) 

     	 BAC = 	 B´A´C´   (ax. 4) 

Hence, in � ABC and � A´B´C´  we have 

AB = A´B´    (given) 

AC = A´C´    (given) 

	 BAC = 	 B´A´C´  (recently proven) 

   �ABC 
 �A´B´C´    (1:st congruence theorem)   [i.e. the SAS theorem] 

Q.E.D.  390  

                               
390 Sjöstedt (1936), pp. 23-24 
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Note that Sjöstedt clearly describe how A´´ is placed in relation to A and 
B´C´. We can compare this to Olson’s proof, where Olson relied on the illus-
trations alone.  

Sjöstedt proved the SAS congruence theorem in the same way as in 
Euclid’s Elements, Heath’s version.391  

In line with the idea to use the congruence theorems as much as possible, 
Sjöstedt applied them even more often than Euclid did. One example is the 
construction problems that correspond to Prop.I.9-12 in the Elements, 
Heath’s edition. At this point we can make a comparison with how both As-
perén and Olson applied their theorems on foldings in the proofs of these 
problems. 

However, Sjöstedt left out some of the theorems in the Elements. In order 
to cope with this, he introduced a new congruence theorem on open figures. 
Asperén and Olson applied movements of a similar type of figure, but they 
did not have a particular theorem for it, see Olson’s Prop.17 above. 

Prop.14. If a distance in a figure equals another distance in another figure, 
and at the ends of the distances, mutually equal angles are allocated, and they 
[the angles] are placed in the same manner, then the two figures are congru-
ent.  

Given: In the figures CABD and C´A´B´D´ , AB = A´B´, 	A = 	A´, 	B = 
	B´.  

Claim:  CABD 
 C´A´B´D´    

 

Proof: Place CABD on C´A´B´D´ so that A falls on point A´ and the distance 
AB falls along the distance A´B´.   

Then point B falls on point B´ , since AB = A´B´   (given). 

Furthermore, AC falls along A´C´ , since 	 A = 	 A´  (given). 

Finally, BD falls along B´D´ , since 	 B = 	 B´   (given). 

                               
391 Sjöstedt (1936), pp. 19-20, Heath (1956), vol. 1, pp. 247-248 
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Hence, the figure CABD covers the figure C´A´B´D´. 

   the corresponding elements in the figures are equal. (ax. 11)392  

   CABD 
 C´A´B´D´   

Q.E.D. 393 

According to a footnote, lines CA, BD, C´A´ and B´D´ are indefinite or not 
restricted. 

The legs AC, A´C´, BD and B´D´ are not restricted, but they can be extended 
without restrictions.394 

In comparison to Euclid’s Elements (Heath’s edition), but also the other 
textbooks investigated in this thesis, Sjöstedt’s Prop.14 stands out as he ap-
plied indefinite, or infinite, lines in connection with congruence and in con-
nection with expressions about elements being equal. In Prop.14, Sjöstedt 
actually established that infinite lines are equal.  

In relation to Euclid’s Elements, the use of infinite straight lines, or any 
infinite quantity for that matter, is highly unconventional. If we consider the 
fifth book in Euclid’s Elements and the first definition, a part of a quantity is 
defined as a quantity that measures the greater quantity. Since a finite quan-
tity cannot measure an infinite quantity, it is not meaningful to consider a 
finite quantity a part of an infinite quantity.395 Consequently, it is not mean-
ingful to consider finite lines as parts of infinite lines.  

Was it then meaningful for Sjöstedt to say that a finite line is smaller than 
an infinite line, or to say that a finite line is a part of infinite line? On the 
basis of Sjöstedt’s textbook, his standpoint in this matter is not clear. In con-
nection with his axioms, mentioned above, he did not state explicitly 
whether or not they encompassed both finite and infinite quantities. 

Another aspect of Sjöstedt’s Prop.14 is that he uses it in a way that is hard 
to follow sometimes. By this new congruence theorem, Sjöstedt quickly 
proved the ASA-congruence theorem. Without further comments and illus-
trations, he considered it a special case of Prop.14.396  
 

                               
392 Sjöstedt’s axioms are listed above. 
393 Sjöstedt (1936), pp. 34-35 
394 Sjöstedt (1936), p. 35: ”Vinkelbenen AC, A´C´, BD och B´D´ äro icke begränsade utan 
kunna obegränsat utdragas.” 
395 Heath (1956), vol. II, p. 113 
396 Sjöstedt (1936), p. 42 
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Yet, it is not obvious on what grounds Sjöstedt justifies that the pair of sides 
are mutually equal. If we follow the proof of Prop.14, it does not establish 
the equality of finite straight lines.  

By means of Prop.14, Sjöstedt also could locate the propositions on paral-
lel lines right after the chapter on the construction problems.  

Prop.15. If two right lines are intersected by a third and a pair of alternate an-
gles is equal, then the lines are parallel. 

Given: AB and CD are intersected by EF in E and F. 	a = 	c . 

Claim: AB // CD. 
 

 

In the proof, Sjöstedt showed that 	d = 	b. Then, according to Prop.14, 
AEFC 
 DEFB. The last part of the proof goes: 

If then AB and CD should intersect, e.g. in the direction of A and C, then they 
should intersect in the direction of B and D as well. The straight lines AB and 
CD should the have two points of intersection. This should be against axiom 
1. 

 AB and CD cannot intersect. 

 AB // CD.      Q.E.D.  397  

In comparison, to the textbooks by Asperén and Olson, the textbook by 
Sjöstedt was closer to previous textbooks that followed Euclid’s Elements 
quite closely, as for instance Lindman’s and Vinell’s. Especially when he put 
the traditional congruence theorems in the center and not some theorems that 
included foldings or symmetries. On the other hand, Sjöstedt deviated from 
the textbooks by Lindman and Vinell on several points. He included new 
axioms, and he did not insert any definitions of points, lines, planes etc; he 
                               
397 Sjöstedt (1936), pp. 36-37 
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was more generous in allowing different types of translations of figures; and 
the order of the theorems was quite different. Moreover, Sjöstedt allowed 
infinite lines in connection with congruence, which we do not see in the 
other textbooks. 

Nyhlén’s textbook – an experimental approach to 
axiomatic geometry 
In the debate in Elementa, Nyhlén suggested that if it was not possible to 
uphold a scientific level of rigor in elementary geometry instruction, then the 
courses should be given more practical and experimental features. This idea 
was in some sense realized as Nyhlén published his textbook in elementary 
geometry in 1947. In this textbook, several of the propositions, but also the 
axioms, were given inductive and experimental proofs or explanations. An-
other innovation was the introduction of measures and real numbers. In the 
preface, Nyhlén underscored that this was done in order to simplify the chap-
ters on parallelograms and circles. Moreover, the introduction of measures 
and real numbers was justified by the connection with needs in practical 
life.398 

In the following subchapters, Nyhléns basic propositions and introduction 
of real numbers are described in more detail. 

An experimental approach to axioms and proofs 
Just like Sjöstedt, Nyhlén applied the style of Hilbert and excluded specific 
definitions of these concepts. The meaning of these concepts was given by a 
set of axioms. Nyhlén’s axioms are listed in Appendix F.  

A distinct feature of Nyhlén’s treatment of axioms was that they were 
given an experimental introduction; the meaning of the axioms was linked to 
the use of two kinds of drawing tools: transporters of straight lines and an-
gles. 

If AB is a distance, then we mark two points C and D, which coincides with A 
and B, on the edge of a transporter of distances (e.g. the edge of a folded 
piece of paper). If the points C and D, by an appropriate transportation of the 
transporter, coincide with the endpoints A´ and B´ of another distance, then 
the distances AB and A´B´ is an example of two equal distances. In connec-
tion to constructions, the distance transporter is used to allocate a distance 
equal to a given distance. … 

                               
398 Nyhlén (1947), p. v 
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Basic proposition 2. If AB is a distance and A´ is a point on a straight line, 
then you can determine exactly one point B´, on each side of A´, so that A´B´ 
equals AB. …  

If AOB is an angle, the legs of the angle transporter are thus placed, that they 
coincide with OA and OB. If the legs of the transporter, by an appropriate 
transportation, coincide with the legs O´A´ and O´B´ of another angle, then 
the angles AOB and A´O´B´ are examples of equal angles. In connection to 
constructions, the angle transporter is used to allocate an angle equal to a 
given angle. ... 

Basic proposition 5. If AOB is an angle and O´A´ is a ray, then you can de-
termine exactly one ray O´B´ on each side of the line O´A´, so the 	 A´O´B´ 
equals 	 AOB.399 

These two drawing tools were used to introduce and explain the eighth 
axiom, which is the SAS-congruency theorem. 

Basic proposition 8. Construct an � ABC. Allocate 	 A´ = 	 A and on the 
legs the points B´ and C´ so that A´B´ = AB and A´C´ = AC. Draw B´C´. 
Compare BC and B’C’, 	 B and 	 B´ and 	 C and 	 C´ by means of trans-
porters. The result gives us reason to insert the following proposition: 

If two sides and the adjoining angle in a triangle equal two sides and the ad-
joining angle in another triangle, then the triangles are congruent (1st case of 
congruence). 400  

An advantage of these axioms, Nyhlén argued, was that foldings and move-
ments of triangles became obsolete. Recall that Nyhlén had criticized both 
Olson and Sjöstedt on this point. Moreover, if we consider Nyhlén’s choice 
of axioms, axioms 2, 5, and 8 remind us of Hilbert’s axioms that treat 
movements of straight lines and angles.401  

By means of these basic propositions, he also proved, or explained, the 
proposition on isosceles triangles and their base angles.  

Proposition 7. Construct an 	 C and allocate CA = CB on the legs. Draw AB. 
Compare 	 A and 	 B by means of a transporter. The result gives us reason to 
insert the following proposition. 

If two sides in a triangle are equal, then the opposite angles are equal. 
(Proposition on base angles). 402 

                               
399 Nyhlén (1947), pp. 3-5  
400 Nyhlén (1947), pp. 8-9 
401 See for instance Hilbert (1913), pp. 2-23 
402 Nyhlén (1947), p. 13 
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Also the SSS and ASA congruence theorems were proved in a similar man-
ner.403 

However, in connection with the subsequent propositions on parallel 
lines, triangles and parallelograms, the axiomatic method was introduced. 
According to Nyhlén, his introduction of the axiomatic method was prepared 
in such a way that the students would not take notice of it.404  

The use of real numbers  
To Nyhlén, the introduction of real numbers and measures was a means to 
exclude several of the propositions in Euclid’s Elements, but also a way to 
meet needs in practical life.  

Considering the needs of the practical life you give, as early as possible, the 
account an arithmetical form (se for instance proposition 29), which also 
bring very considerable simplifications. This requires a foundation where 
each distance and angle can be assigned a number. Thus, the first task that is 
brought to you in connection to the arithmetization of geometry is to insert 
measures of distances and angles on the basis of the basic propositions. When 
measures of distances and angles are inserted, the theory of surfaces and cir-
cle arcs can be arithmetized immediately. Purely geometrical propositions on 
surfaces of parallelograms and the Pythagorean Theorem as well as proposi-
tions on circle arcs are therefore completely superfluous. Moreover, a purely 
geometrical theory, based on special basic propositions on surfaces – e.g. 
Euclid I:35-48 – is now antiquated. At the level of Realskolan one can, of 
course, only give an extremely simplified account on the theory of measures. 
This theory is then extended and deepened at the Gymnasium.405    

The elimination of Prop.I.35-48 in the Elements was done by the introduc-
tion of the area formula for rectangles. The area formula was justified and 
explained in same manner as in the textbooks for Folkskolan. By simple 
constructions, the area formulas for triangles, parallelograms, and parallel 
trapezoids were derived.  

The Pythagorean Theorem, Prop.I.47, was included in the chapters on 
uniformity and proportions. In this way, the proof was made shorter and less 
complicated. 

Proposition 46. In a right triangle, the square on the hypotenuse equals the 
sum of the squares on the other two sides. (The Pythagorean Theorem).   

 

                               
403 Nyhlén (1947), pp. 13-14 
404 Nyhlén (1947), p. v 
405 Nyhlén (1947), p. v 



 158 

     

Given: In �ABC, 	C is right. CD is the height against the hypotenuse. 

Claim: a2 + b2 = c2 . 

Proof: �ADC~�ACB (prop. 43), which among other things means that x/b = 
b/c . 

�BDC~�BCA (prop. 43), which among other things means that y/a = a/c . 

 The equality x + y = c means that 

b2/c = a2 /c = c . 

 a2 + b2 = c2 .    

To my knowledge, Nyhlén was the first to use this proof of the Pythagorean 
Theorem in a Swedish textbook in elementary geometry.  

Concluding remarks – the textbooks in Realskolan and 
the significance of the professional debate 
During the period 1905-1935, textbooks that followed Euclid’s Elements 
very closely were fairly common in Realskolan.406 Here, I am referring to the 
textbooks by Lindman and Vinell. They even named their textbooks The first 
four books of Euclid. In comparison to Heath’s edition of Euclid’s Elements, 
the theorems and the outline were the same, but some of the proofs were 
altered.  

Thus, quite a number of teachers seemed to side with Petrini in the choice 
of textbooks. The textbooks by Lindman and Vinell were used until the late 
1930’s, when they were excluded from the official list of approved text-
books, a list that appeared for the first time in 1935.  

As I have described in Part C of this dissertation, arguments against 
Euclid’s Elements as a textbook was conveyed during the 1920’s. Moreover, 
the benefits of alternative textbooks were also described. In this part, I have 

                               
406 In this case, I am referring to Heath’s edition of Euclid’s Elements. 
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shown that alternative textbooks were produced during the period 1905-
1935. Here, I am referring to the textbooks by Asperén, Josephson and Ol-
son. These textbooks share the following characteristics: 

� They deviated from the Euclidean outline and the number of theo-
rems needed for the proofs of some theorems was severely in-
creased. This meant also that the theorems could be grouped more 
thematically. Some theorems were dropped completely. 

� The definitions and all the axioms were not given via a list in the 
beginning of the textbooks. They were introduced, when needed. 

� The authors did not always make explicit references to axioms and 
previous theorems. 

� The Euclidean theorems on congruency were complemented by 
theorems on foldings and symmetry lines. In some proofs, these 
theorems also replaced the Euclidean congruence theorems. 

� Movements of triangles, but also other types of surfaces, were ap-
plied more often then in Euclid Elements. 

These characteristics correspond well to the arguments conveyed by Meyer, 
Hedström and Olson in the professional debate on geometry instruction.  

However, the authors of the alternative textbooks did not abandon the 
axiomatic method. Nonetheless, as I just mentioned you can find proofs in 
the textbooks of Asperén and Olson where the authors did not give a formal 
justification to every inference. For instance, they did not always motivate 
explicitly that two straight lines that share two points coincide. 

According to an investigation on mathematics instruction published in 
1871, textbooks very similar to Euclid’s Elements were the most common at 
the lower secondary level. The alternative textbook designed by Asperén 
was first printed in 1896. According to an investigation on textbooks in the 
Swedish schools published in 1931, the alternative textbooks were used by a 
clear majority of the teachers in Realskolan. Thus, we can observe a change 
in the choice of textbooks among mathematics teachers during the period 
1905-1931. Since this change was not forced by official directives regarding 
textbooks, I think it fair to say that a majority of the teachers found the ar-
guments like those of Meyer, Hedström and Olson to be the most relevant.  

This change in the choice of textbooks provides interesting information 
about the professional debate about geometry instruction that was going on 
in the 1920’s. Petrini’s criticisms of contemporary textbooks and teaching 
were not directed against some recent trend. It was Meyer, Hedström, and 
Olson, not Petrini, who were the defenders of the prevailing situation.  

After 1935, the textbooks by Olson and Sjöstedt were probably the most 
successful textbooks first published after 1925. This conclusion is based on 
the fact that their works were reprinted most frequently. In 1936, Sjöstedt 
published his first geometry textbook, which could be considered a design in 
accordance with Euclid’s course, he claimed. In comparison with Lindman’s 
and Vinell’s editions of Euclid’s Elements, Sjöstedt deviated from this 
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course on quite some points. He shortened the chain of theorems needed for 
some proofs; he dropped some theorems and inserted some new ones; he 
applied movements of triangles and other types of surfaces more often. 
Sjöstedt even used a congruence theorem that included infinite straight lines, 
which is unconventional in connection with classical geometry. However, he 
did not include theorems on symmetry or foldnings; he inserted a list of axi-
oms in the beginning of the textbook; and he preserved the Euclidean outline 
to a much greater extent than Asperén and Olson did.  

Olson published his first textbook in geometry 1925.  
Hence, up to 1965 the teachers mainly chose between the textbooks by 

Olson and Sjöstedt along with the older textbooks by Asperén and Joseph-
son. 

An important aspect is that all these textbooks were designed according to 
the axiomatic method. Consequently, as the students began to study geome-
try in grade 7, they were introduced to axiomatic geometry and an apparatus 
of definitions, axioms, theorems, and proofs. This provides us with an idea 
of what the arguments about training in reasoning in connection to geometry, 
but also mathematics in general, meant to the persons involved. The axio-
matic method did constitute a central component this type of reasoning.  

A third type of alternative textbook introduced by Nyhlén in the late 40’s. 
This textbook had a more experimental approach, and Nyhlén applied real 
numbers in order to make the some proofs more attainable. However, this 
textbook was also predominantly designed according to the axiomatic 
method. Nyhléns textbook was not a success among the teachers.  

Nonetheless, the arguments of Petrini and Nyhlén about raising the level 
of rigor and precision seem also to have been relevant to the authors of alter-
native textbooks. Olson, whose textbook was published in 1925, inserted 
axioms and comments which his role model Asperén did not insert in his 
textbook, e.g. an axiom on movements. Olson also explained the properties 
of foldings, which we do not find in Asperén’s textbook. In Sjöstedt’s text-
book, first printed in 1936, we can see an ambition not to rely on illustrations 
as he moved geometrical objects; he explicitly described how the objects 
were placed. We can compare this to how Olson and Asperén quite often did 
not formulate how the objects were moved and placed. 

On the other hand, the scientific ideal regarding rigor and precision ex-
pressed by Petrini and Nyhlén were not easy to live up to. In all the text-
books investigated, there are examples where the authors did not justify their 
inferences by means of previous theorems or axioms; instead they relied on 
illustrations and our intuitive understanding of the geometrical objects and 
their properties. Even Petrini can be criticized in this respect. As he re-edited 
Lindman’s textbook in the early 1920’s, he did improve crucial details in 
Lindman’s proof of Prop.I.5. However, he did not explicate all the essential 
features of the theorem and the proof, which other textbook authors did, for 
instance Sjöstedt. About the same time Petrini argued that Euclid’s Elements 
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was the ideal textbook, and he called upon others to make the Elements bet-
ter with respect to exactness. Petrini argued also that a high level of preci-
sion would make the proofs easier to follow for the beginner.  

This provides a hint about the trouble the textbook authors faced as they 
wanted to modify Euclid’s Elements or develop alternative textbooks based 
on the axiomatic method. To achieve new proofs was not an easy task. 

To end with, I think it fair to say that the supply of geometry textbooks 
for Realskolan during the period 1905-1962 was wide; the teachers could 
choose between distinct types of textbooks where the selection of theorems 
and the design of proofs were different. At this point we should not forget 
that the number of students in Realskolan increased and new schools were 
started throughout the period 1905-1962.407 Thus, the textbook market was 
expanding. In that perspective, the professional debate about geometry in-
struction in Realskolan, which I describe in Part C of this thesis, was rele-
vant to the teachers in the lower secondary schools. In this debate, the axio-
matic method and textbook design were main issues. 

                               
407 See the background chapter on the Swedish school system. 
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Part F – Geometry exercises in final 
examinations in mathematics in Realskolan 

A general description of the exam process 
The final examinations for Realskolan constituted an ending at Läroverken 
for the students aiming for vocational training or working life. The final 
exams in Realskolan were therefore voluntary, and students who went on to 
the Gymnasium generally did not take the exam; they left Realskolan after 
year eight.  

The exam process took place during ninth grade, the last grade in Real-
skolan, at the beginning of May each year. A first part comprised a written 
test in Mathematics, together with written tests in Swedish, German, and 
English. The tests in mathematics usually comprised eight, but on some oc-
casions seven, exercises. In the test in Swedish, the students were supposed 
to write an essay on one out of a small number of topics. The test in German 
comprised a translation of a given text from Swedish to German or a repro-
duction of German text. The test in English comprised the same two alterna-
tives. Between 1905 and 1927, the test in Swedish was to be finished in four 
hours; the tests in Mathematics, German, and English were to be finished in 
three.408 With the new regulations of 1928 and onwards, the time for the test 
in Mathematics was extended to four hours.409 

The second part of the exam process comprised at least four oral tests in 
some of the subjects of the last year of Realskolan. The oral tests were taken 
in groups of five to eight students and each test lasted for 30 to 45 minutes.410 

Between 1905 and 1927, the written tests in Swedish and Mathematics 
were mandatory, while at least one of the tests in German and English were 
to be taken.411 From 1928 and onwards, only the test in Swedish was manda-
tory; the students then had to take at least two of the other written tests.412 
Hence, the students could choose not to take the test in mathematics.  

In order to proceed to the oral examination, the students had to pass the 
test in Swedish and at least one of the other tests. In 1928, this requirement 

                               
408 SFS 1905:6, p. 21 
409 SFS 1928:412, p. 1339; SFS 1933:109, p. 163 
410 SFS 1905:6, p. 21; SFS 1928:412, p. 1339; SFS 1933:109, p. 194 
411 SFS 1905:6, p. 20 
412 SFS 1928:412, p. 1338 
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was extended to at least two of the other tests. However, students who 
passed just one of the other written tests could still proceed if two thirds of 
the teachers approved of this.413 

The correction processes of the exam in mathematics, but also the other 
subjects, comprised two parts. First, the tests were corrected by the teachers 
at the schools; thereafter, they were sent to one or more test examiners who 
corrected the tests once more. During the first decades of the 20th century, all 
tests from all schools were corrected a second time, but as the number of 
students increased, not all schools had to send in their tests. In the early 
1950’s, one of the test examiners made a comment that one third of the tests 
had been corrected once more.414  

These examiners brought together statistics from the teachers’ corrections 
and their own corrections; these were presented in a report together with 
comments on the results and the exercises. In the final summary of these 
reports, we also find comments about how some exercises ought to be cor-
rected and how the teachers had carried out the corrections. 

Until 1951, these reports contain extensive and detailed statistics, and the 
records are well organized. After 1951, the reports are much briefer and the 
records are not in good order, with parts missing as well.415  

The final examinations in mathematics – a brief 
description and some statistics 
From the beginning in 1905, Realskolan comprised only one program. In 
1934, three practical programs were added: trade, technology, and household 
matters. The old program was then denoted the general education program. 
Yet, all students followed the same course program in mathematics, and they 
took the same tests in mathematics during the exam process – there were no 
special courses for some category of students. In 1951, different final exams 
in mathematics were given: one for the longer course and one for the shorter. 
The shorter course did not contain geometry exercises that required any sort 
of proof. 

As I have mentioned, the students that entered the Gymnasium, i.e. the 
upper secondary level, usually left Realskolan in year eight, and they did not 
take the final exams in Realskolan. Hence, the test results that I display in 
this chapter do not reflect the capacity of all the students in Realskolan. 
Nonetheless, since all students, up to 1951, followed the same course pro-
gram, the final exams in mathematics do reflect what the students in general 
were expected to know about mathematics when they left Realskolan. The 

                               
413 SFS 1928:412, p. 1339, SFS 1933:109, p. 163 
414 Riksarkivet A, vol. 75 
415 Riksarkivet A, Riksarkivet B 
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tests also provide good information about what kind of exercises the teachers 
included in their teaching.  

The tests usually comprised eight exercises. The exercises could have the 
following topics.416 

� Arithmetical and algebraic reductions 
� Equations 
� Equation systems 
� Currency reductions 
� Problems on profit and loss 
� Discounts 
� Percentage and interest rate 
� Exchange bills 
� Shares and bonds 
� Company exercises 
� Mixture exercises 
� Working problems 
� Uniform motion 
� Number problems 
� Plane geometry 
� Stereometry  

Before 1950, the exam test in mathematics contained one to three geometry 
exercises.  

From 1950, the number of geometry exercises increased on the final ex-
ams in mathematics. The tests included, up to four exercises related to ge-
ometry. According to a circular from the central school authorities to the 
schools, the level of difficulty of the most difficult exercise should remain at 
the same level as during the previous decade, but the less difficult exercises 
was supposed to become easier. The teachers were also recommended to 
devote more lessons to geometry. Moreover, in the same circular the central 
school authorities declared that the general level of difficulty of the final 
exams in mathematics was to be lowered, not only the geometry exercises. 
This was to be accomplished by inserting more easy exercises.417 

Each exercise on the final exam could render 1 or 0 points, i.e. satisfac-
tory or not satisfactory. In order to pass the test in mathematics, the students 
had to achieve 3 points or more.418 In the graphs below, we can observe the 
students’ results on the tests in mathematics. 

                               
416 This categorization is taken from Stenbäck & Sundbäck (1962), a collection of exam exer-
cises. Such collections were regularly published.  
417 Kungl. Skolöverstyrelsen (1950), s. 134 
418 Grimlund & Wallin (1939), p. 81 
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Here we can see that the extension of the time for writing the test by one 
hour from three to four hours, in 1928, coincides with an improvement of the 
results. Moreover, according to the graphs, the period 1933-1935 seems to 
have been a decisive moment for the students’ achievements on the tests in 
mathematics. However, the trend is somewhat ambiguous. If the number of 
students succeeding is compared to the number of students that took the 
mathematics test, the results remain on a level around 80 percent or above up 
to 1954, even though there are some clear exceptions and we can observe a 
slightly negative trend. But, if the number of successful students is compared 
to the number of students that entered the exam process, the negative trend is 
clearer. The beginning of this trend coincides with the new curriculum of 
1933, when the number of lessons in mathematics in Realskolan was de-
creased by approximately 20 percent. 

Between 1935 and 1939, the share of students who took the test in 
mathematics during the exam process, decreased from about 98 percent to 90 
percent. One could expect that this trend might have begun in 1928, when 
the test in mathematics became voluntary, but it did not. Furthermore, be-
tween 1928 and 1935, the number of students in Realskolan increased by 
more than 50 percent. 
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Figure 3.  
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The dips in the lower graphs in 1948 might be caused by an incorrect transcript.  
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The dip in graph with triangles, 1934, is probably caused by an incorrect transcript.  



 167

Thus, if we consider the graphs, it appears as if mathematics instruction be-
tween 1928 and 1934 functioned quite well, despite an increasing number of 
students and the fact that the final exam in mathematics was voluntary, al-
most 100 percent of the students took the test and more than 80 percent 
passed the tests.  

The great decrease of the number of students that took the exam in 
mathematics, which begins in 1951, is most likely linked to the fact that 
students could choose to take an easier test in mathematics during the exam 
process. 

The numbers in Figure 2-4 are based on Riksarkivet A, B and E, see the 
list of references. 

The geometry exercises in the final examinations 
Different types of geometry exercises and the requirements about 
reasoning 
In the collection of exam exercises in mathematics (1917-1962) edited by 
Stenbäck & Sundbäck (1962), the geometry exercises were divided on four 
topics: 

� Determination of angles 
� The Pythagorean Theorem 
� Uniformity (and proportions) 
� Surface problems419  

However, students were not informed about which category an exercise be-
longed to when taking the test.    

Here follow some samples of geometry exercises from the final exams. 
The S indicates that the exercises were given in the spring. The number to 
the left of the colon indicates which year the exercise was given. The num-
ber to the right of the colon indicates which number the exercise had in the 
test. In some cases a number within parentheses is inserted, indicating that 
the same exercise was reused that year.  

Determination of angles 

S 25:6 (S 52:7) When the opposite sides of an quadrangle inscribed in a circle 
are extended until they meet, one pair of the opposite sides generate an angle 
of 37� and the other pair an angle of 23�. What is the measure of the angles of 
the quadrangle? 

                               
419 In the exercises, the students are asked to compute a surface, not an area as we would say 
today. 
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S 30:6 In a triangle ABC, the sides AB and BC are equal. P is the centre of 
circle that is circumscribed around the triangle and Q is the center of a circle 
that is inscribed in the triangle. The angle PAQ is 6�. Compute the angles of 
the triangle. 

S 39:5 (S 50:6) A ship takes a bearing at a beacon, i.e. one determines the 
angle between the direction of the ship and the line aiming at the beacon. The 
bearing is 40�. After 50 minutes of sailing where the course and the speed of 
9 knots are kept, the new bearing at the same beacon is twice as great, i.e. 
80�. How great was the distance, in nautical miles, to the beacon by the sec-
ond time the bearing was taken? 1 knot = 1 nautical mile per hour.  

The Pythagorean Theorem 

S 24:8 A circle goes through the endpoints of one of the sides to a square and 
touches the opposite side in its midpoint. Compute the radius of the circle, 
when the side of the square is 3.2 cm. 

Uniformity 

S 25:8 The square ABCD is 2 m2. B and the midpoint M at AD are joined. BM 
intersects the diagonal AC at E. How great are AE and CE? 

S 39:8 (S 50:8) An isosceles parallel trapezoid is circumscribed about a circle 
with a radius of 6 cm. The longer parallel side is 4 times the shorter parallel 
side. The points in which the circle touches the equal and non-parallel lines 
are joined. Compute the length of this unification line. 

S 45:8 In the triangle ABC, the height AH lies within the triangle. BH is 5 cm. 
AH is 1 cm shorter than AB. In addition, AC and CH are 36 cm together. In 
the circle that is circumscribed around the triangle ABC, a diameter AD is 
drawn; after that, D is joined with C. Compute the length of CD.  

Surface problems 

S 30:3 A field has the shape of a triangle ABC, where AB = 108 m, AC = 144 
m and BC = 180 m. From a point D on AB, situated 48 m from B, we want to 
erect a fence DE parallel to BC and across the field. What is the length of the 
fence? 

S 40:4 In a circle sector ABC, a circle is inscribed so that it touches the arc 
BC of the sector and the radii AB and AC. The point O is the centre of the in-
scribed circle, whose radius is 2 cm. OA is 4 cm. Compute the surface of the 
sector. �  = 3.14. 

S 40:5 A real estate area has the shape of a parallel trapezoid, where the two 
parallel sides are perpendicular to one of the other sides. On a map, with the 
scale 1:4000, the parallel sides are 1 cm and 2 cm, and the greater of the other 
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sides is 3 cm. How much is the real estate area worth if the price per square 
meter is 2.25 kr. 

S 43:7 (S 52:6) In a parallel trapezoid each of the sides AB, BC, and CD is 6 
cm and the fourth side AD is 12 cm. The diagonals AC and BD intersect in O. 
Compute the surface of the triangle AOD. 

S 47:7 In an isosceles triangle, the base is 26 cm and the height against one of 
the equal sides is 24 cm. Compute the surface of the triangle. 

S 54:7 In a right triangle ABC, the hypotenuse BC is 12 cm. From the mid-
point D of the hypotenuse, a perpendicular DE is drawn. Point E lies on side 
AC. Compute the surface of the triangle ABC, when the distance DE is 2 cm. 

Later on in this chapter, I will refer to some of these exercises. 
Throughout the period, the solutions to all exercises were to result in the 

calculation of a number – the measure of an angle, the length of a line or the 
area of a surface. Moreover, the exercises contained measures. In this respect 
the exercises on the exam differed from the textbooks, which did not contain 
any measures at all. Thus, in the textbooks the axiomatic method and proofs 
were the main question; on the final exams, though, the students were sup-
posed to apply their knowledge and skills in pure mathematics in order to 
calculate. However, we should not overestimate the importance of this dif-
ference. The exam exercises in mathematics were regularly published in 
booklets, which provided teachers with good opportunities to prepare stu-
dents.   

Apart from the categorization above, I discern two types of geometry ex-
ercises at the final exams that exhibit the following characteristics. 

I All the premises for the application of a numerical relation 
were given explicitly in the formulation of the exercise. A 
numerical relation was for instance the Pythagorean Theorem, 
the sum of angles in a triangle, and propositions on angles and 
circles. Hence, if the student knew the meaning of a couple of 
theorems and the numerical relations and was able to link 
these to the explicit premises, she could formulate a numerical 
or algebraic expression and then compute the angle, length, or 
area sought. The exercises often required one or more compu-
tations before the final computation could be carried out. 

II All the required premises for the application of the numerical 
relations were not given explicitly in the formulation of the 
exercise. Thus, the student had to make a more thorough in-
vestigation of the data, sort out which numerical relations may 
be useful, and find out what premises that are missing. More-
over, according to the comments in the exam report, a correct 
solution of these exercises should include some sort of justifi-
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cation of the premises that the student was supposed to dis-
cover on their own. The test examiners regularly made com-
ments about the lack of proofs and motivations. Like this one, 
from 1924: “... without having established any kind of proof 
...”420 The critical question is, of course, what type of justifica-
tions or proofs the students had to achieve. I return to this 
question below.  

Note that the two categories above concern the geometry exercises on the 
final exams in Realskolan. There are similarities to my categorization of the 
exercises in the textbooks intended for Folkskolan, the type-A and type-B 
exercises, but we must remember that the exercises in Realskolan were much 
more difficult. In the type-A exercises, the students merely had to choose a 
formula out of a few and carry out one computation. In solutions to the type-
I exercises the students had to choose one or more theorems out of a great 
number; moreover, the solutions required more complicated computations 
with more steps. Another difference is that some sort of proof was not re-
quired in Folkskolan.    

Each exam test in mathematics during the period 1905-1962, except for 
one year, included one or two Type-II exercises. They were often given 
number seven or eight in the final exams. The Type-I exercises were com-
mon during the 1930’s, but quite rare before that period and even rarer af-
terwards. Generally, 50 percent or more of the students could achieve a satis-
factory solution to the Type-I exercises. However, there were exceptions. If 
we consider the solution frequencies of the Type-II exercises, they were 
generally below 50%; in half of the cases, the frequency was 30% or less. I 
return to this statistics later on.  

The Type-I exercises includes exercises like S 30:3 and S 40:5 in the list 
above. They often had some allusion to practical applications. In this group, 
I have also included exercises, like S 25:6, which had no explicit connection 
to practical matters. In order to solve this exercise you have to apply theo-
rems like I.32 and III.22 in Euclid’s Elements421 and all the premises are 
given explicitly in the exercise. In this example, the justifications are based 
on Olson’s textbook, first published in 1925. 

S 25:6 When the opposite sides of a quadrangle, inscribed in a circle, are ex-
tended until they meet, one pair of the opposite sides generate an angle of 37� 
and the other pair an angle of 23�. What is the measure of the angles of the 
quadrangle? 

 

                               
420 Riksarkivet A, vol. 5 
421 Heath’s edition 
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The angles at A, B, C and D are denoted �, �, �  and �. 

From Prop.82422 we know that the opposite angles in a quadrangle inscribed 
in a circle are supplementary angles. From Prop.2 we know that supplemen-
tary angles equal two right angles. From this we get 

� + � = 180�  and  � + � = 180�. 

According to Prop.25423, we also know that the sum of the angles in a triangle 
equals two right angles. From this we get 

� + � + 37� = 180�  and  � + � + 23� = 180�.  

We can now determine �, �, �  and � by solving the equations above. 

Among the Type II exercises, we find exercises like S 24:8, S 25:8, S 30:6, S 
39:5, S 39:8,S 40:4, S 43:7, S 45:8, S 47:7, and S 54:7. The most common 
relations that you have to recognize before you can formulate an algebraic 
expression are the following:  

� Two angles are equal. 
� One angle is a right angle.  
� Two sides are equal.  
� Two sides having a certain ratio. 
� One angle is twice as great as another angle. 

In connection with this, four types of theorems are useful. 

                               
422 See Prop.III.22 in Euclid’s Elements, Heath’s edition.[Heath (1956), vol. 2, pp. 51-52] 
423 See Prop.I.32 in Euclid’s Elements, Heath’s edition.[Heath (1956), vol. 1, pp. 316-317] 
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� Theorems on straight lines and angles such as the theorems on ver-
tical and alternate angles and the theorems on base angles and sides 
in isosceles triangles. 

� Congruence theorems 
� Theorems on uniform triangles and proportion. 
� The theorems on angles, straight lines, and circles in Book III of 

Euclid’s Elements424. Useful theorems were 18-22, 26-27 and 31-
32. 

The fact that the theorems on congruency were so crucial in connection to 
the final exams is interesting when we consider the design of the alternative 
textbooks. In these, new theorems on perpendiculars, symmetry, and fold-
ings sometimes replaced the Euclidean congruence theorems. Hence, these 
new theorems were not just a technical innovation in the sense that they were 
to help the authors to construct textbooks where the proofs and the chains of 
theorems were shorter; they really took aim at theorems that the students had 
to master in order to solve exercises.  

Here are two examples of how some premises must be established before 
you can formulate a numerical or algebraic expression. This time, the theo-
rems are taken from Sjöstedt’s textbook, first published in 1936. 

S 25:8 The square ABCD is 2 m2. B and the midpoint M on AD are joined. 
BM intersects the diagonal AC in E. How large are AE and CE? 

 

   

ABCD is a square. Its area is 2 m2. AM = MD. 

In order to determine the lengths of AE and CE you first have to determine 
their ratio.  

We then have to establish that �AME ~ �CBE.  

                               
424 Heath’s edition 
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	AEM = 	CEB since they are vertical angles (Prop.2)425. Since ABCD is a 
square, AD // BC. Hence, 	AMB = 	CBM and 	MAC = 	BCA (Prop.19)426. 
Since the corresponding angles in �AME and �CBE are equal, we have that 
�AME ~ �CBE (Prop.73)427. 

Due to the uniformity we have the proportion MA:AE::BC:CE (Def. uniform-
ity). Since BC = 2 AM, we get the equality CE/AE = 2/1. 

 

V 45:8 In the triangle ABC, the height AH lies within the triangle. BH is 5 
cm. AH is 1 cm shorter than AB. In addition, AC and CH are 36 cm together. 
In the circle that is circumscribed around the triangle ABC, a diameter AD is 
drawn; after that, D is joined with C. Compute the length of CD. 

 

 
 

An important step in the solution is to establish that �AHB ~ �ACD. Hence, 
we have to show that two pairs of corresponding angles are equal. 

	ACD = R since 	ACD stand on the diameter AD and its vertex lies on the 
periphery (Prop.39)428. Thus, 	ACD = 	AHB, since AH is a perpendicular to 
BC. 

	CDA = 	CBA since the angles stand on the same arc CA and their vertexes 
lies on the same periphery (Prop.40)429. Hence, 	CDA = 	HBA. 

                               
425 See Prop.I.15 in Euclid’s Elements, Heath’s edition.[Heath (1956), vol. 1, pp. 277-278] 
426 See Prop.I.29 in Euclid’s Elements, Heath’s edition.[Heath (1956), vol. 1, pp. 311-312] 
427 Prop.73: “If two angles of a triangle equal two angles of another triangle, then the triangles 
are uniform.”[Söstedt (1936), pp. 96-97] 
428 Prop.39: “If a midpoint angle and an angle at the periphery stand on the same arc, then the 
midpoint angle is twice as large as the angle at the periphery.”[Sjöstedt (1936), p. 61] In 
Sjöstedt’s textbook this theorem encompassed midpoint angles equal to 2 right angles. In 
Euclid’s Elements, Heath’s edition, there is a separate theorem that establishes that if an angle 
at the periphery is standing on the diameter of the same circle, then the angle at the periphery 
equals 1 right angle.[Heath (1956), vol. 2, pp. 61-62]     
429 See Prop.III.21 in Euclid’s Elements, Heath’s edition.[Heath (1956), vol. 2, pp. 49-50] 
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Since two pair of angles is equal, �AHB ~ �ACD. (Prop.73)430 

Obviously, these are my solutions and I do not claim that this was how the 
problems were solved. I merely wish to exemplify how some exercises re-
quired a more careful investigation of the formulation of the exercise. An 
important aspect is that students had to discover some premises on their own 
before they could formulate a numerical or algebraic expression, by which 
they could compute the answer. Thus, from a heuristic point of view, I think 
that the geometry exercises, especially the Type-II exercises, were quite 
demanding.  

The final exams and the theorems in the textbooks 
All the textbooks of the period 1905-1962 contained a set of theorems that 
were necessary for the solutions of the exercises on the test. The theorems 
were the following. The numbering is taken from Euclid’s Elements, Heath’s 
edition. 

Book I:  4-6, 8-12, 14, 15, 26-30, 32, 47 

Book III: 18-22, 26, 27, 31, 32 

Moreover, all textbooks contained theorems on triangles, uniformity, and 
proportions, which also were required when solving the exercises on the 
final exams. 

Apart from these theorems, the textbooks that deviated from the Elements 
also contained new theorems. As I have described above, they were often 
inserted in order to bring about a new outline of the theorems. But some of 
the new theorems may have been useful when solving the geometry exer-
cises on the final exams. At this point, we should also note that the Type-II 
exercises required that students were able to recognize certain premises be-
fore they could formulate an algebraic expression. For instance: 

� Two angles are equal. 
� One angle is a right angle.  
� Two sides are equal.  
� Two sides having a certain ratio. 
� One angle is twice as great as another angle. 

In that context, the following theorem can have been quite useful. It estab-
lishes that one angle equals a right angle, the equality of two angles and the 
equality of two lines.  

                               
430 Prop.73: “If two angles of a triangle equal two angles of another triangle, then the triangles 
are uniform.”[Söstedt (1936), pp. 96-97] 
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Prop. 63  The tangents from a point to a circle are equal. The central line bi-
sects the angles between the tangents, and it is the midpoint perpendicular to 
a chord between the end of the tangents.431 

This particular theorem is taken from Sjöstedt’s textbook, but we also find it 
in the textbooks by Asperén and Olson.432 If we consider one of student pa-
pers displayed below, we can see that the student used this theorem.   

A second new theorem, which may have been useful in the final exams, 
concerns circles and circumscribed quadrilaterals. 

Prop. 68  If a circle is circumscribed by a quadrilateral, the sum of two oppo-
site sides equals the sum of the other two.433 

This theorem is also taken from Sjöstedt, but Asperén and Olson inserted 
similar theorems as well.434 On some occasions, the geometry exercises on 
the final exams contained such circles. 

If we consider the student papers and the reports from the final exams, the 
students used a relation linked to the so-called 30�-60�-90� triangle. They 
then inferred that the side opposite the right angle is twice the side opposite 
the 30�-angle. This procedure was also accepted by the teachers. However, 
there is no such theorem in the textbooks. I suspect that this relation was 
established in connection with equilateral triangles. If we draw a bisector to 
one of the angles, the bisector will divide the opposite side in equal parts and 
we attain two 30�-60�-90� triangles. In one solution of a student that is dis-
played below, the student has applied this relation. 

Policies regarding the correction of the geometry exercises 
According to the reports of the examiners, the first official correction forms 
for the final exams in mathematics appeared in 1943.435 Between 1944 and 
1962, Sjöstedt was responsible for the official correction forms.436 However, 
the comments made by the test examiners in the test reports have compen-
sated for the lack of correction forms.  

To my knowledge, there were no official and detailed directives that de-
scribed what a proof should look like on the final exams. The official correc-
tion forms did not contain such directives. Most likely, the proofs in the 
                               
431 Sjöstedt (1936), pp. 84-85. Actually, the first proposition “the tangents from a point to a 
circle are equal”, was proved in the proof of another theorem in Lindman’s and Vinell’s text-
books, but they did not give it a separate theorem.[Lindman (1894), p. 90; Vinell (1907), p. 
108] 
432 Olson (1940), pp. 70-71; Asperén (1928), pp. 70-71 
433 Sjöstedt (1936), pp. 89-90. This theorem is proved by means of Prop. 63. 
434 Olson (1940), p. 81; Asperén (1928), pp. 76-77 
435 The first comment by the test examiners on some kind of official directive is made in 
1943.    
436 Riksarkivet A, Riksarkivet B 
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textbooks constituted a model in this respect. At this point we have to re-
member that some proofs in the textbooks were not perfect from a logical 
point of view. Some conclusions were drawn without references or with 
incorrect references. (See the previous part.) On the other hand, the textbook 
authors never abandoned the axiomatic method; their aim was to base the 
inferences on axioms and previous theorems.  

However, there was room for proofs or justifications that did not meet the 
textbook standards. As pointed out above, you could receive 1 or 0 points on 
each exercise, i.e. pass or not pass, but there were two passing grades: satis-
factory or satisfactory with hesitation.437 

From 1949 onwards, the directive of the correction forms was that mark-
ings in the diagrams should be accepted as justifications, but then with the 
grade satisfactory with hesitation.438 A recommendation in the correction 
form of 1956 had the following formulation: 

In order to receive ”Satisfactory” there should be an acceptable justification 
for the generation of a 30�-60�-90�-triangle. If a written justification is not 
given or the formulation is defective, but from the diagrams and the calcula-
tions in general it is obvious that the student has understood the exercise, then 
the solution should be accepted with hesitation.439 

What the policy on proofs or motivations looked like before 1949 is not as 
clearly stated. In the annual reports about the final exams, there are two 
comments where the examiners, in writing, accept markings as a motivation. 
About exercise S 25:8 above, the examiner made the following comment.  

The unsatisfactory thing about their solutions is, in the most cases, that no 
proof or a very incomplete proof is given for the claim that the line BM, from 
the corner of the square to the midpoint M of the side AD, divides the diago-
nal by the proportion 1:2. This proof is most conveniently achieved by the 
uniformity of the triangles AEM and BCE. I have considered solutions with-
out any kind of proof for the uniformity of the triangles not satisfactory. But, 
I have in several cases been content with equal markings of equal angles as 
an indication of uniformity. In some cases, the examinees have achieved ap-
proximations of AE and CE by means of measurements. Such solutions I 
have judged as not satisfactory.440   

                               
437 Riksarkivet A, Riksarkivet B. The grades satisfactory or satisfactory with hesitation were 
used by the test examiners throughout the period. 
438 Riksarkivet C, Riksarkivet D 
439 Riksarkivet D: ”För ”Nöjaktigt” bör det föreligga en fullgod motivering för att en 30�-60�-
90�-triangel uppkommer. Om skriftlig motivering ej givits eller är bristfälligt formulerad men 
det av figuren och uträkningarna i övrigt synes framgå, att eleven förstått uppgiften, torde 
lösningen kunna godtagas med tvekan.” 
440 Riksarkivet A, vol. 6:  “Det otillfredställande i deras lösningar är i de allra flesta fall, att 
intet bevis eller mycket ofullständiga sådana givits för påståendet att linjen BM från kvadrat 
hörnet till sidan AD:s mittpunkt M delar diagonalen i förhållandet 1:2. Beviset härför sker 
enklast medelst likformighet mellan trianglarna AEM och BCE.Jag har ansett, att en lösning 
utan bevis i någon form för trianglarnas likformighet icke är nöjaktig. Men, jag har i flera fall 
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There is similar remark about exercise S 37:8: 

Most solutions are based on uniformity, which the author has recognized but 
not often proved. This has been accepted without any further considera-
tions.441  

Moreover, in three other comments from the 1920’s and 1930’s we get the 
impression that vaguer types of justifications were allowed. The examiners 
complain about students who make assumptions without any motivation or 
without further ado.442 My point is that they do not ask for a specific type of 
motivation, but any type of motivation. Another circumstance is that the 
examiner, in 1934, made a general comment on the level of formalism, 
which indicates that less formal proof should be accepted.   

The formal performance of the tests in mathematics is in general commend-
able. Yet, exceptions do occur in excessively great numbers. Since the writ-
ten exam test in Realskolan explicitly is termed a “calculation test,” not a test 
in mathematics, the examiners do not find it justified, more than very little, to 
consider the formal aspects of the test.443 

What the examiner is referring to in the passage “explicitly is termed a ‘cal-
culation test’” is probably the fact that the tests were called “provräkning” in 
the school regulations, i.e. test in calculation.444 

It might be that the two explicit recommendations on markings were ex-
ceptions to a policy where only textbook proofs were accepted. On the other 
hand, why should markings be accepted in these cases, but not in others? A 
more probable hypothesis is that the examiners found the correction of these 
two exercises a bit ambiguous and therefore wanted to specify a policy 
where markings in the diagram were regularly accepted. That hypothesis is 
also supported if we consider some of the actual student papers and their 

                                                                                                                             
nöjt mig med att, att likformighet blott antytts genom markering av lika vinklar medelst lika 
beteckningar. I några fall har examinanderna genom mätning erhållit approximativt värde på 
AE och CE. Sådana lösningar har jag också bedömt såsom icke nöjaktig.” 
441 Riksarkivet A, vol. 26: ”De flesta lösningar stödja sig på likformighet, som förf. insett men 
ofta ej bevisat, något som utan vidare godtagits.” 
442 Riksarkivet A, vol. 1 (1920) ”De flestas fel är att de utan vidare göra det oriktiga påståen-
det, att kvadratens diagonal är normal mot hypotenusan och därpå bygger sin lösning.”; vol. 5 
(1924) ”De flesta av dem, som misslyckats, ha utan att hava presterat något bevis, grundat sin 
lösning på det oriktiga påståendet, ... ”; vol. 6 (1925) ” De flesta, som fått felaktigt resultat, ha 
utan vidare gjort det oriktiga antagandet, ...” 
443 Riksarkivet A, vol. 18: ”Provräkningarnas formella utförande är i regel berömvärt. Undan-
tag förekomma dock i väl stor mängd. Då emellertid det skriftliga provet i real(skol)examen 
uttryckligen betecknas som ”provräkning”, icke som matematisk skrivning, ha eftergranskar-
na icke ansett sig berättigas vid valörsättningen att annat än i mycket ringa mån fästa avseen-
de vid den formella sidan av provet.” 
444 Grimlund & Wallin (1939), p. 80 
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corrections.445 Here, we find corrections where the teachers accepted very 
simple justifications. They could consist of markings in the diagram or alge-
braic expressions that revealed that the student had recognized the meaning 
of the theorems. Here follows three examples of Type-II exercises from 
1930, 1920 and 1910.  

                               
445 I have investigated the student papers at one of the secondary schools in Uppsala during 
the years 1907-1964. The school is Uppsala Högre Allmänna Läroverk, or Katedralskolan as 
it is named today. See “Landsarkivet, Uppsala”, Uppsala” in the list of references.   



 179

S 30:6  In a triangle ABC, the sides AB and BC are equal. P is the centre of a 
circle that is circumscribed around the triangle and Q is the center of a circle 
that is inscribed in the triangle. The angle PAQ is 6�. Compute the angles of 
the triangle.446 

 
This is the complete solution. In the centers of the two circles, there are two symbols 
P and Q. Q lies above P in the diagram. In this solution, the student overlooked the 
possibility of a second solution. In that case, the center of the smaller circle lies 
below the center of the larger circle. The teacher made a comment on this, but 
graded the solution “Satisfactory”. 
                               
446 Livius & Stenbäck (1941), p. 49 



 180 

An important part in the solution is that the lines AQ and QC bisect the an-
gles BAC and BCA. This is not motivated by the student; he not even marked 
the equalities of the angles BAQ and CAQ and the angles BCQ and ACQ. 
However, by putting the angles BAC and BCA equal to x and the angles PAC 
and PCA equal to (x/2 – 6), he appears to have recognized these equalities. 
He also recognized the equality of base angles in isosceles triangles. From 
the theorem on the sum of angles in a triangle, he attains that the angle APC 
equals 180 – 2(x/2 – 6) and the angle ABC equals 180 – 2x. From the theo-
rem on angles at the center and the circumference of a circle447, the student 
formulates the expression 180-2(x/2-6)=360-4x, by which he solved the 
problem. 

The fact that he used the equalities of the angles BAQ and CAQ and the 
angles BCQ and ACQ is interesting, since there are no theorems in Euclid’s 
Elements, or the textbooks that followed the Elements closely, that establish 
this equality. However, in the textbooks that deviated from the Elements 
such a theorem was included. I have mentioned this theorem in a section 
above.  

The following two solutions to S 10:7 and S 20:7 were also considered 
correct. Here, numerals were taken as an indication of that the students had 
understood the theorems.    

                               
447 In a circle the angle at the center is twice the angle at the circumference when the angles 
have the same circumference as their base. 
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S 20:7   An isoceles triangle is inscribed in a circle. The base of the triangle 
equals the radii of the circle (2 cm). Compute the angles and the surface of 
the triangle. More than one solution can be attained.448 

 

In this solution, which is the complete solution and not only the answer, the 
student only had to put out the measurements of various angles, which re-
veals that he had understood the theorems. He recognized that the smaller 
triangle is equilateral and its angles equal 60�. He recognized also that the 
top angle of the greater triangle is half the angle at centre of the circle, i.e. 
30�. Since the greater triangle is an isosceles triangle, the base angles are 
equal and they must then equal 75�.  

                               
448 Livius & Stenbäck (1941), p. 29 
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S 10:7  In a triangle ABC, angle A = 30�, angle B = 45� and the height from 
C against AB = 4 dm. Compute the sides and the surface of the triangle.449 

 

In this example also, the teacher accepted a solution where the student by 
measurements and algebraic expressions revealed that he had understood the 
meaning of the theorems. The student did not have to give a formal justifica-
tion of the measurements of angles and lines. For instance, after having rec-
ognized that the smaller triangle containing the side AC is a 30�-60�-90� 
triangle, the student simply marked the line AC equal to 8 dm 

These examples from three different decades provide a good idea about 
what markings could look like and what types of justifications that were 
accepted. 

                               
449 Livius & Stenbäck (1941), p. 9 
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Apart from the comments on markings, the exam reports also reveal solu-
tions based on special cases, e.g. the students assumed that a triangle had a 
straight angle even though this was not explicitly established in the exercise. 
Sometimes, such solutions were approved by a majority of the teachers as 
well as the test examiners; sometimes, just by the teachers, sometimes by 
neither of them.450 In the actual exam papers, we can also observe that the 
teachers accepted minor computational errors of the type 2 + 2 = 5 in the 
solutions to the geometry exercises.451  

Considering the correction forms, the exam reports, and the corrections of 
student papers, the most important criteria for a correct solution of the ge-
ometry exercises on the exam was not any requirement regarding formal 
justifications or proofs. The important thing was that the students had under-
stood the meaning of the theorems and that they could apply these theorems 
in connection with calculations. Another aspect is that when toiling with the 
geometry exercises on the final exams, it was more important to be a skilled 
problem solver than to be a master of formal proofs. If you could not dis-
cover the missing premises and if you could not come up with a suitable 
numerical or algebraic expression, you could not reach a satisfactory answer 
to the exercises. Moreover, all exercises asked the students to find a number.  

In that respect, the teachers’ reality and the arguments on the axiomatic 
method and the value of training in reasoning that we find in the articles on 
geometry instruction are quite remote from each other. I think that this cir-
cumstance adds an important aspect to our understanding of the relevance of 
the professional debate and the arguments about geometry instruction and 
training in reasoning. 

Complaints about the achievements of students and teachers 
In the reports on the final exams, complaints about the formal treatment of 
the geometry exercises occurred a few times during the 1920’s and 1930’s, 
mostly as very brief comments. From 1937 and onwards, these complaints 
appeared more frequently, and the formulations are longer and contain more 
severe criticisms. This is a remark on the solutions to exercise S 40:4. 

The treatment of exercise 4 displays how the students in Realskolan of today 
have difficulty with executing logical proofs, even if , as in the present case, 
they are of the simplest type. To this exercise, as to the exercises 5 and 8, the 
drawings accomplished are, on several occasions, most insufficient; indeed, 
in several cases the solution is not accompanied by any drawing at all.452 

                               
450 Riksarkivet A, vol. 1, 5, 6, 7, 10, 17 and 70. 
451 Landsarkivet, Uppsala, Uppsala 
452 Riksarkivet A, vol. 35: ”Behandlingen av uppgift 4 ådagalägga svårigheten för realskolans 
elever att nu för tiden genomföra en logisk bevisföring, även om denna, som i ifrågavarande 
fall, är av enklaste art. I denna uppgift såväl som i uppgifterna 5 och 8 äro de utförda ritning-
arna många gånger synnerligen bristfälliga, ja, i många fall åtföljes lösningen ej alls av någon 
figur.” 
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From about the same time, we can observe another type of complaint regard-
ing the geometry exercises. These complaints did not concern the students’ 
performances, but the teachers’ ability to correct the geometry exercises. 
There were two types of criticisms: 1) some teachers tended to accept solu-
tions based on incorrect justifications or no justifications at all; 2) some 
teachers appeared not to have understood the problem in the exercise at 
hand. 

The simple geometrical exercise 6, to which the justification of the equality 
of the sides of the triangle is essential and the most natural, has, in surpris-
ingly many cases, been accepted either without or with insufficient or, in-
deed, even with incorrect justifications.453 

In this case, the examiner was referring to exercise V 50:6. An almost identi-
cal exercise was used in 1939. In 1939, the test examiner did not make any 
comments like this at all. In a comment on exercise V 44:8, the examiner 
complained about some teachers’ ability to understand the problem at hand. 

In connection with exercise 8, many solutions have been approved that in-
clude special treatments, right-angled triangles and special assumptions about 
the lengths of the sides. Thereby, the teacher in question has been shown not 
to have understood the meaning of this pretty geometrical problem.454      

The complaints about the teachers did not occur every year; between 1945 
and 1947, there were no complaints at all. However, from 1948 to 1952, they 
occurred each year. Between 1953 and 1962, there are no such comments, 
but that might be related how the reports were designed. They were much 
briefer after 1952. 

In connection with these complaints about the teachers’ abilities to under-
stand and correct the geometry exercises, we can note that Sjöstedt and oth-
ers, in articles, passed comments on the shortage of educated teachers in 
mathematics and the negative consequences of this shortage. Sjöstedt re-
ferred to an investigation that showed that more than 40 percent of the 
mathematics teachers in Realskolan did not have an adequate education in 
mathematics; their pedagogical education and experience was considered 
even more insufficient.455 

                               
453 Riksarkivet A, vol. 68: ”Den enkla geometriska uppg. 6, i vilken helt naturligt motivering-
en för triangelns likbenthet är det väsentliga, har i överraskande många fall godtagits såväl 
utan, som med bristfällig, ja, t.o.m. felaktig motivering.” 
454 Riksarkivet A, vol. 47: ”För uppgift 8 hava i många fall godtagits lösningar med special-
behandling, rätvinklig triangel eller specialantaganden om sidornas längder. Därigenom har 
vederbörande lärare visat sig ej förstå innebörden i detta vackra geometriska problem.”  
455 Hilding (1958) p. 43; Sjöstedt (1959), p. 101 
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Statistics regarding the geometry exercises  
In general, each test contained two exercises on plane geometry, on some 
occasions just one, and on some occasions three. Yet, in 1931, there was no 
exercise in plane geometry at all. 
Figure 5.  
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In this diagram, the results at the test in mathematics are related to the number of 
students that took the test in mathematics. The max-graph indicates the solution 
frequency for the exercises that was solved by the largest number of students. The 
min-graph indicates the solution frequency for the exercise that was solved by the 
smallest number of students. The average-graph indicates the mean value of the 
solution frequencies of all exercises. The min.geom.ex-graph indicates the solution 
frequency for the geometry exercises that was solved by the smallest number of 
students. The max.geom.ex-graph indicates the solution frequency for the geometry 
exercise that was solved by the largest number of students. The scattered dots indi-
cate the solutions frequency for other geometry exercises. The numbers are based on 
Riksarkivet A, B and E. 

On the basis of the diagram above, it is fair to say that the geometry exer-
cises belonged to the more difficult exercises each year, if not the most diffi-
cult. One should then also consider that the share of students that took the 
test in mathematics dropped from 98 percent in 1935 to 85 percent 1950.  

The geometry exercises where the solution frequency is above 50 percent 
belongs to the Type-I exercises, those that did not require some sort of proof. 
This type of exercises almost disappeared after 1940. This is a bit surprising 
considering the fact that the number of lessons was cut by one fifth in 1933. 
Instead of making the geometry exercises easier, the constructors of the tests 
made them harder. 
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If we consider the geometry exercises with the lowest solution frequen-
cies, mainly Type-II exercises, there are no clear trends; the solution fre-
quency could fluctuate quite drastically from year to year. Hence, it is not 
possible to tell whether the students’ performances on the geometry exer-
cises improved or got worse. Fortunately, some of the exam exercises were 
reused. The test constructors only changed the measurements of angles and 
lengths.  

Table 9.  

Exercises % tries % success  Exercises % tries % success 

S 25:6 43.99 35.43  S 39:8 19.46 4.39 
S 52:7 24.67 16.60  S 50:8 16.64 5.83 
       
S 39:5 41.21 32.36  S 43:7 66.05 28.46 
S 50:6 44.60 36.16  S 52:6 57.85 22.23 
       

Table 9. The shares are related to the number of students taking the exam test in 
mathematics. V 25:6 is a Type-I exercise. The others are Type-II exercises. 
These numbers indicates that the skills of the students had not changed sig-
nificantly during the 1940’s and early 50’s. But then we should recall that 90 
percent of the students that entered the exam process took the test in mathe-
matics in 1939. In 1950, this figure was 85 percent. Moreover, the test exam-
iners complained about the teachers’ corrections of V 50:6 since several 
teachers had accepted insufficient or even faulty solutions.    

Another aspect of diagram O above is that the test constructors seem to 
have had difficulty in predicting the results and the level of difficulty of the 
exercises. Some years, the most difficult geometry exercise was solved by 5 
percent of the students; other years, by 45 percent of the students. Further-
more, these great differences were not unusual.      

Concluding remarks – Geometry exercises in the final 
examinations and the significance of the professional 
debate 
As I have described in Part C of this thesis, the main goal for the courses in 
axiomatic geometry was to provide training in reasoning. This goal about 
training in reasoning was relevant in the sense that the textbooks were de-
signed according to the axiomatic method. As the students, together with the 
teacher, worked with the textbooks, they were introduced to the whole appa-
ratus of definitions, axioms, theorems, and deductive proofs.  

Another aspect of this goal on training in reasoning is that the final exam 
in mathematics during period 1905-1962 contained at least one geometry 
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exercise that required that the students be able to provide some sort of justi-
fication. At least the exercises were constructed in that way, and according 
to the exam reports the students were expected to achieve some sort of for-
mal proof.   

In comparison to the textbooks, the formulations of the geometry exer-
cises were different. In the exam, the students were not asked to prove some 
proposition; instead, they were asked to determine an angle, a length, or an 
area. Moreover, all exercises contained measurements, and almost all solu-
tions required some calculation. But, in order to formulate a numerical or 
algebraic expression, the students had to discover and establish one to three 
relations between angles or between lines, for instance, that two angles are 
equal. These were the relations that should be justified in some way. 

Until 1950, at least 85 percent of the students that entered the exam proc-
ess took the test in mathematics, even though they could choose not to and 
still pass the exam process. Thus, considering the construction of the geome-
try exercises on the exam test and the fact that the students were expected to 
achieve some sort of proof, the goal about training in reasoning encom-
passed a great majority of the students in Realskolan, not just those who 
would be attending upper secondary school, i.e. Gymnasiet. In that respect, 
training in reasoning was a part of a general education.  

After 1950, the students could choose between a shorter and a longer 
course in mathematics. The shorter course did not include axiomatic geome-
try. After 1950, fewer than 30 percent of the students that entered the exam 
process took the more difficult exam test in mathematics, the test that cov-
ered the courses in axiomatic geometry. In that respect, after 1950 the goal 
about training did not encompass a majority of the students in Realskolan.456 

Regarding the requirements on the proofs that the students were supposed 
to achieve, the proofs in the textbooks constituted the ideal proof. However, 
the requirements on the proofs performed by the students at the final exams 
seem to have been lower throughout the period. After 1949, the correction 
forms established that markings in the diagrams that revealed the student’s 
line of reasoning should pass as a justification. Before 1949, there were no 
official directives on this issue, but there are comments in the reports about 
the exams that imply that this was the case. The first comment on this issue 
appeared in 1925. Moreover, actual student papers and the corrections made 
by the teachers confirm that this was standard procedure throughout the pe-
riod 1905-1962. 

This puts the relevance of the arguments about training in reasoning and 
the axiomatic method in a new perspective. In order to pass the geometry 
exercises on the exam test, the most important thing was not to achieve a 
textbook proof. The critical part was to discover the relations between angles 

                               
456 By corresponding schools I am referring to the schools that functioned as experimental 
schools in connection with the preparations of Grundskolan. 



 188 

and sides by which a numerical or algebraic expression could be formulated. 
But, if we consider the debate on geometry instruction in Realskolan, heuris-
tics and problem solving was not an issue. In that respect, the argumentation 
about training in reasoning did not treat an important aspect of the geometry 
courses. 

The fact that this type of exercises occurred in each exam test and that 
markings were accepted throughout the period 1905-1962 indicates that 
proofs were not the teachers’ only concern in connection with geometry 
instruction, especially not with an eye to the final exams.  

If we consider the results on the final exams in mathematics, the goal of 
providing training in reasoning was not a success. Especially, if this type of 
training were part of a general civic education and not just a preparation for 
further studies at upper secondary level and university. The results on the 
more difficult geometry exercises in the final exams were every year among 
the lowest, if not the lowest. Between 1905 and 1954, half of the geometry 
exercises that required some sort of justification were solved by fewer than 
30 percent of the students that took the test in mathematics. On some occa-
sions, fewer than 10 percent of the students passed these exercises. At this 
point we should not forget that markings were accepted as justifications. 
Another circumstance is that the share of students that took the test in 
mathematics during the exam process decreased from 98 percent in 1935 to 
85 percent in 1950. Moreover, from about 1940 and onwards, the number of 
complaints in the exam reports about students’ skills in carrying out formal 
justifications. Complaints also began to occur about the teachers’ abilities to 
understand and correct the geometry exercises from about this time. 

Thus, by the beginning of the 1950’s when the preparations for 
Grundskolan started, the arguments about training in reasoning and general 
civic education, which I see as the main rationale for having courses in 
axiomatic geometry, were not especially convincing; they had lost much of 
their relevance. 
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Part G – Epilogue 

Geometry textbooks and professional literature on 
geometry instruction in Realskolan, 1905-1962 
In the investigated articles regarding geometry instruction in Realskolan, the 
main goal of geometry instruction was to provide training in reasoning; this 
was the main argument for having courses in axiomatic geometry. However, 
the arguments about training in reasoning in connection with geometry in-
struction included more than logical thinking. A common argument was that 
the students developed a critical attitude regarding language and reasoning in 
general, but also their spatial intuition, i.e. their conception of space.  

Similar types of arguments were used to justify courses in pure mathemat-
ics at the secondary level in Prussia/Germany and England during the 19th 
century and early 20th century.457 Still, I do not think that we first and fore-
most should consider the Swedish debaters during the period 1905-1962 as 
some kind of defenders of an old educational ideal or some cultural heritage. 
A more reasonable backdrop to their argumentation is the debate about civil 
rights during the first decades of the 20th century. I think that the debaters’ 
underlying motivation was to educate independent citizens who are able to 
think and reason critically. Moreover, if we consider the curricula of Real-
skolan, we can see that the debaters could support their argumentation on 
formulations about providing a general civic education. This description is 
reasonable in comparison to Lövheim’s (2006) description of science teach-
ers as a progressive group who wanted to change society.458 Similar argu-
ments about geometry instruction and civic education also occurred in the 
USA during the first decades of the 20th century, according to González and 
Herbst (2006).459 

But then, apart from the arguments regarding critical thinking, what did 
training in reasoning mean? What did this training include and what was 
demanded of the students? One aspect is that all the textbooks up to 1950 
were designed according to the axiomatic method. Hence, the students were 
introduced to the whole apparatus of definitions, axioms, theorems, con-
structions, and proofs. Not until the end of the 1940’s did a textbook with an 

                               
457 See the background chapters in this thesis. 
458 See the background chapters in this thesis. 
459 See the background chapters in this thesis. 
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experimental approach appear. But in that case, too, the axiomatic method 
constituted the core.  

Another answer is provided by the final exams in mathematics in Real-
skolan. Each year, during the period 1905-1962, they contained geometry 
exercises whose solutions required some sort of justification. More precisely, 
the students were supposed to justify one to three simple relations regarding 
angles or lines. This gives us an idea what kind of proofs the students were 
supposed to master on their own as they left Realskolan. However, in order 
to pass the geometry exercises the students merely had to make markings in 
the diagrams or put out measurements that revealed that he or she had recog-
nized the relations. I.e. the students did not have to achieve a more formal 
justification. 

If we then consider also the results of the geometry exercises in the final 
exams, I think it is fair to say that the goal of providing training in reasoning 
to a majority of the students in Realskolan was far from attained. Throughout 
the period 1905-1962, the results of the geometry exercises were quite poor.  

Regarding the methodological arguments, spatial intuition was a central 
issue in the methodological discussions, especially for those who wanted to 
develop alternatives to Euclid’s Elements as a textbook. They argued that 
geometry was more than logical thinking; effective learning required that 
students also developed their spatial intuition. Moreover, textbooks and 
teaching should appeal to spatial intuition. Here, we can observe some simi-
larities with how reformists in England and Germany conceived geometry 
instruction. According to Fujita et al (2006), both Treutlein in Germany and 
Godfrey in England underscored the importance of spatial intuition in con-
nection with geometry instruction.460 

A distinctive feature of the debate on spatial intuition is that those who 
underscored the importance of spatial intuition were linked the teacher jour-
nal specialized in mathematics461, teacher training and the national school 
board. The same debaters were also careful about marking a difference be-
tween school geometry and scientific geometry. Their basic standpoint was 
that one could not attain the same level of rigor in school geometry. 

Another argument in the methodological discussion was that a proof 
should not only be correct from a logical point of view; it should also reveal 
a more natural cause to why the theorem is correct. Proofs based on foldings 
or symmetry were considered more appropriate in that respect. As I have 
shown in this thesis, textbooks were indeed designed according to these 
ideas. Moreover, about 1930, these textbooks were used by a majority of the 
mathematics teachers in the lower secondary schools. To some extent, these 
findings contradict the claims of Magne (1986) and Håstad (1978) about 

                               
460 See the background chapters in this thesis. 
461 I.e. Elementa. 
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mathematics instruction being traditional, isolated, and static during the first 
half of the 20th century.  

However, in the articles investigated, Euclid’s Elements was defended, 
and it was used by several teachers up to the 1930’s. To some extent, 
Euclid’s Elements had something of a revival from the 1930’s onwards. In 
1936, Sjöstedt introduced his textbooks on axiomatic geometry. By his own 
account, he followed Euclid’s course as far as possible. Moreover, he did not 
insert theorems that included foldings or symmetry. Yet, he deviated from 
the Elements on several points. This textbook, together with an alternative 
textbook by Olson, were the most common textbooks introduced after 1925, 
although it is not clear how many teachers actually chose these textbooks.    

If we then think of the professional debate as a source of potential argu-
ments and an incentive for actions, it is interesting to consider the relevance 
of the arguments. What aspects of geometry instruction did the arguments 
concern? My standpoint is that the arguments were focused on the axiomatic 
method and proofs. Even though spatial intuition was a central issue in the 
methodological discussion on how to develop textbooks and teaching, the 
aim was to develop theorems and proofs. Also when the students’ predispo-
sitions and their reception of the teaching were discussed, it was the theo-
rems, the proofs, and the axiomatic method that constituted the main con-
cern.  

I do not say that these arguments were not relevant. Considering the fact 
that the teachers could chose between different types of textbooks during the 
period 1905-1962, they were relevant. My point is that other aspects of ge-
ometry instruction, e.g. heuristics or problem-solving, was not really an is-
sue. Moreover, a discussion on problem solving would not have been irrele-
vant. If we consider the geometry exercises in the final exam and the re-
quirements for the solutions, the most important thing was not to master 
proofs but to be an able problem solver.  

As I see it, an essential part of the geometry courses was not acknowl-
edged as important by the leading debaters. Nor did they provide any notions 
or methods to tackle problem-solving. In that respect the professional debate 
was much less relevant and we cannot consider it an incentive for actions 
and a source of arguments. 

This circumstance can be seen as one explanation to why the results on 
the geometry exercises in the final exams were quite bad throughout the 
period 1905-1962. The lack of explicit notions and methods regarding an 
essential part of the course may have become critical as an increasing num-
ber of new teachers had to be trained. As a matter of fact, from 1940 on-
wards the reports from the final exams in mathematics indicate that an in-
creasing number of teachers did not grasp the more difficult geometry exer-
cises themselves. Another critical factor was that the number of students in 
Realskolan increased. But not only that, an increasing number of students 
probably meant an increasing number of students whose parents had no ex-
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perience of the geometry courses in Realskolan. Without support from 
teachers and parents, the situation of many students was probably quite diffi-
cult. 

Taken together, I would say that the professional debate about geometry 
instruction in Realskolan that I have described in this dissertation had lost 
much of its significance by the late 1940’s. The main argument for having 
courses in axiomatic geometry – the goal about training in reasoning – had 
lost much of its relevance; a clear majority of the students did not master the 
geometry exercises on the final exams where they were supposed to apply 
their skills in reasoning. Moreover, relevant parts of the geometry courses 
were not covered by the methodological arguments in the professional de-
bate. 

I think that this circumstance adds a new perspective to the changes of 
school geometry that took place in the 1950’s and 60’s. The professional 
debate about geometry instruction in Realskolan did not constitute a power-
ful source of arguments. Arguments by which leading actors, such as Sjöst-
edt who then held a high position in the national school board, could explain 
for teachers, school officials, and politicians how and why school geometry 
should be developed in a certain way. Hence, the changes in mathematics 
instruction in the 1950’s and 60’s were not only a matter of arguments about 
school mathematics being old fashioned in relation to society and science.  

To end with, I think it would be interesting to investigate reports and 
journals connected to the ICMI in a perspective where you consider not only 
the arguments but also their significance. If we are looking for potential ar-
guments and incentives for actions, I think that ICMI was a leading forum. 
Not only that, within ICMI we also find prominent mathematicians, like 
Felix Klein, that may have given some extra weight to certain arguments.  

It might be that also the relevance of the reformist arguments conveyed 
within the ICMI was quite limited. Take, for instance, Treutlein’s and God-
frey’s views on geometrical thinking, which are described by Fujita et al 
(2006). Moreover, Godfrey was involved in ICMI. To them, geometrical 
thinking encompassed logical thinking and abilities linked to spatial intui-
tion, standpoints that look remarkably similar to the arguments in the debate 
on geometry instruction in Realskolan. 462 

Geometry textbooks and professional literature on 
geometry instruction in Folkskolan, 1905-1962 
If we consider the curricula for Folkskolan during the period 1905-1962, a 
main goal of geometry instruction was to provide skills that suited the stu-

                               
462 See the background chapters in this thesis. 
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dents’ daily life and future working life. In practice, this meant a great many 
exercises where the students were to calculate lengths, areas, and volumes. 
All the investigated textbooks of the period were dominated by such exer-
cises. Often these exercises had connotations to some sort of possible future 
life: the students were supposed to compute areas of fields or volumes of 
cylindrical pieces of timber.    

However, in some of the literature used in teachers training, this goal was 
complemented by a goal regarding training in reasoning. For instance, this 
goal was established in the first edition of Wigforss’ work on teaching meth-
ods in mathematics printed in 1925. This goal was also established in the 
curriculum of 1955. However, in comparison to the arguments regarding 
training in reasoning in Realskolan, Wigforss did not restrict this training to 
geometry.  

If we consider the textbooks produced and used during the period 1905-
1962, this goal about training in reasoning did not result in large number of 
new exercises. In the textbooks, exercises where the students were supposed 
to compute lengths, areas, or volumes dominated. Moreover, the solution to 
these exercises followed the same procedure: select a formula for length, 
area, or volume; plug in the given measurements; and compute. Exercises 
with solutions more complicated than that were very rare throughout the 
period 1905-1962. In the textbooks first printed before 1925, we find no 
such exercises. A more difficult exercise could be to determine the meas-
urement of the angle between the hands of a clock at a given time. Thus, if 
we consider the complexity of the exercises, the goal about training in rea-
soning appears not to have been relevant to the textbooks authors. 

In the investigated essays on geometry instruction in Folkskolan, visuali-
bility (åskådlighet) was the important concept in the methodological discus-
sions. Moreover, almost all of the textbook authors designed their textbooks 
in accordance with the arguments on visualibility. 

In all the investigated textbooks intended for Folkskolan, the introduc-
tions and explanations of concepts, formulas, and other propositions fol-
lowed the same routine. The students work through a series of experimental 
exercises where they are supposed to observe, manipulate, or measure an 
illustration or some other object. At the end of the series, a definition, a for-
mula, or some other proposition is established. Wigforss and other authors of 
teaching literature described this routine, and they linked it to the concepts 
visualibility, i.e. åskådlighet. Their main argument was that students, while 
working with the experimental exercises, should observe the essential fea-
tures of a concept, a formula, or some other proposition. 

Since Wigforss linked his arguments on visualibility and this routine to 
the goal regarding training in reasoning, it may be that the textbooks authors 
shared this view. As I have mentioned, the textbook authors were not keen 
on inserting great numbers of exercises that required more complex solu-
tions. 
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During the period 1905-1962, the exercises linked to this routine changed. 
At the beginning of the period, the students were guided through the experi-
mental exercises by written explanations and illustrations. During the 
1930’s, these written explanations were dropped together with the illustra-
tions. Still, the routine involving experimental exercises was kept intact.  

As I see it, the changes in experimental exercises constitute the most 
thorough change in the geometry textbooks, or the chapters on geometry, 
during the period 1905-1962. This indicates that the methodological argu-
ments on visualibility were taken seriously by the textbook authors. That 
was the relevant argument in the development of textbooks. In contrast, we 
can observe only minor changes of the exercises where the students were 
supposed to make calculations.    

Thus, we can observe how certain aspects of geometry instruction in 
Folkskolan in fact did change during the period 1905-1962. To some extent, 
this contradicts Magne’s (1986) and Håstad’s (1978) claims about mathe-
matics instruction being traditional, isolated, and static during the first half 
of the 20th century. However, I think the most interesting finding is that the 
arguments about visualibility appear to have been so influential during the 
period 1905-1962. In all the textbooks investigated, the experimental routine 
was applied; a routine that was described by Wigforss and clearly linked to 
ideas about visualibility. Moreover, Wigforss also linked this routine to ar-
guments about training in reasoning. 

If we consider Wigforss’ argumentation about mathematics instruction as 
a source of potential arguments and an incentive for actions, I think we can 
get some new insights regarding why and how school geometry changed in a 
certain way in connection with the introduction of Grundskolan. As I have 
mentioned, Wigforss was very much involved in the preparation of the cur-
riculum for the new Grundskolan. 

As a source of potential arguments, Wigforss offered more than advice 
about how to teach the most basic mathematics useful in the daily life; he 
also provided methodological arguments and goals about training in reason-
ing. Moreover, these arguments were relevant to the teachers and others in 
the sense that they corresponded well to certain parts of the textbooks and 
the curriculum. We can compare this to the professional debate about ge-
ometry instruction in Realskolan. My point is that Wigforss and those who 
shared his views on mathematics instruction had good opportunities to ex-
plain to teachers, school officials, and politicians how and why school 
mathematics, including geometry, had to change in a certain way. 



 195

Summary in Swedish 

Syftet med avhandlingen är att undersöka läroböcker och annan litteratur 
som användes av lärare inom folkskolan och realskolan i samband med un-
dervisningen i geometri under perioden 1905-1962. Källmaterialet utgörs 
främst av läroböcker i geometri, kursplaner, metodböcker, artiklar som be-
handlar geometriundervisning och examensprov i matematik för realskolan. 
Valet av dessa källor motiverar jag med att det är lärare och läroverksförfat-
tare som upprätthåller undervisningen i skolan; om vi då ska söka kunskap 
om undervisning och hur undervisning förändras, så är det relevant att un-
dersöka texter som denna yrkesgrupp har användt i sin yrkesutövning, sin 
profession. 

Jag har ägnat särskild uppmärksamhet åt något som jag på engelska kallar 
professional debate. På svenska skulle jag vilja kalla det en fackdebatt, en 
debatt där geometriundervisningens innehåll och metoder beskrivs och moti-
veras. Alltså, de klassiska didaktiska frågorna om vad, hur och varför. 

 Min första fråga i avhandlingen är helt enkel: vilkat argument förekom i 
fackdebatten om den grundläggande geometri undervisningen? De viktigaste 
källorna för denna fråga har främst varit artiklar i lärartidningar specialisera-
de på matematikundervisning och litteratur som använts inom lärarutbild-
ningen i samband med matematik. 

 Den andra frågan handlar om fackdebattens signifikans, en fråga som de-
las upp på två delfrågor.  

a) Vad betydde de begrepp och argument som förekom i debatten? Ett 
vanligt argument var att undervisningen skulle vila på åskådlighet, men vad 
betyder egentligen det? Ett annat uttryck man kan ställa sig undrande inför är 
”träning i tänkande”. Särskilt den axiomatiska geometrin på realskolan sågs 
som viktig i detta avseende. Men återigen, vad innebär denna träning egent-
ligen? Vad krävdes av eleverna? Detta försöker jag att utreda. 

b) Den andra delfrågan handlar om argumentens relevans. I vilken ut-
sträckning berörde argumenten i fackdebatten kursernas innehåll och de 
professionellas verksamhet? 

För att besvara frågan om fackdebatens signifikans har jag främst under-
sökt läroböcker och examensprov.  

Skälet till att undersöka den grundläggande geometriundervisningen i 
Sverige under perioden 1905-1962 är tvåfaldigt. För det första, skol-
geometrin diskuterades flitigt i andra länder under denna period. Vad som 
skedde i Sverige har vi dock liten kännedom om, även om geometri var en 
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viktigt del i skolmatematiken i Sverige. För det andra, det svenska skolsy-
stemet genomgår under perioden 1905-1962 en rad viktiga förändringar: 
naturvetenskaperna blir viktiga skolämnen; antalet elever på realskolan och 
gymnasiet ökar; kvinnor får tillgång till högre utbildning; folkskolan och 
realskolan integreras; och kyrkans inflytande över skolan minskas. Eftersom 
matematik var, och fortfarande är, ett viktigt skolämne, så är en undersök-
sökning av detta ämne under perioden 1905-1962 intressant också ur ett mer 
allmänt utbildningshistoriskt perspektiv. Inte minst är skolgeometrin intres-
sant då den upptog en stor del i timplanen. 

Som sagt, den svenska skolmatematikens historia är relativt okänd. Anta-
let mer genomgripande studier kursplaner, läroböcker, artiklar, prov, mm, är 
mycket litet. Vad jag vet finns det en sådan studie, Hatami (2007). Det det 
finns dock i didaktiska och pedagogiska rapporter och avhandlingar historis-
ka bakgrunder där skolmatematiken historia i Sverige berörs. De få gånger 
som perioden före 1950 berörs, så görs det i termer av ”tradition”, ”statisk” 
och ”isolation”.  

Vid en jämförelse med arbeten kring Sveriges utbildningshistoria, så intar 
dessa beskrivningar något av en särställning. Ofta beskrivs perioden 1905-
1962 som en period då naturvetenskap, ingenjörskonst, teknologi, upplys-
ning, demokrati och jämlikhet var viktiga begrepp i debatten om hur samhäl-
lets skulle förändras. Inte minst deltog en del läroverkslärare i naturveten-
skap i denna debatt. Om beskrivningarna om ”tradition”, ”statisk” och ”iso-
lation” är riktiga, så antyder det att skolmatematikens innehåll inte följde 
samhällsdebatten, en debatt som en del lärare själva deltog i. 

I detta sammanhang kan geometriundervisningen på realskolan framstå 
som något som hörde till det traditionella. De senare geometrikurserna på 
realskolan var fokuserade på den axiomatiska geometrin och bevis och till-
lämpningar togs inte upp i särskilt stor utsträckning. 

För att slutningen nämna något om mina resultat, så visar jag att geo-
metriundervisningen i Sverige förändrades under perioden 1905-1962. I den 
fackdebatt som rörde geometriundervisningen på realskolan, så diskuterades 
läroböcker och undervisningsmetoder. Kritik framfördes mot läroböcker som 
följde Euklides Elementa och man beskrev hur alternativa läroböcker borde 
vara utformad. Men inte bara det, man producerade också läroböcker i enlig-
het med dessa förslag. Vid början av 1930-talet var dessa böcker betydligt 
mer populära än de böcker som följde Euklides Elementa. I de nya böckerna 
introducerade man bl a satser som byggde på symmetribegreppet och vik-
ningar. Sådana satser motiverades med att de var mer naturliga än de gamla 
Euklidiska. En viktig detalj är dock att den axiomatiska metoden inte över-
gavs. Den skulle göras mer tillgänglig med hjälp av dessa nya satser och 
bevis. 

Även läroböckerna på folkskolan förändrades. I fackdebatten om matema-
tikundervisningen i Folkskolan var det viktigt att begrepp och formler pre-
senterades på ett åskådligt vis. En väsentlig del i ett sådant arbetssätt var att 
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eleverna var aktiva genom att observera och manipulera olika objekt eller 
figurer. Detta arbetssätt genomsyrande även utformningen av läroböckerna i 
geometri. Genom obsertvationer och experiment introducerades geometriska 
begrepp och formler för eleverna. Under perioden 1905-1962 kan men se 
förändring av hur också folkskolans läroböcker i geometri utformades med 
avseende på detta arbetssätt. I de böcker som producerats före 1925, så gui-
das eleverna igenom åskådningsövningarna. Efter 1925 är en del läro-
boksförfattare betydligt sparsammare med hjälpen och eleverna ska klara 
uppgifterna på egen hand. Men i övrigt skedde relativt få förändringar av 
folkskolans läroböcker i geometri. 

Även inom realskolan fanns det saker som inte förändrades. Under hela 
perioden 1905-1962, så motiverades kurserna i axiomatisk geometri med att 
de erbjöd en utmärkt träning i tänkande. Det var dock inte bara en fråga om 
träning i logik, geometriundervisningen ansågs också bidra till att utveckla 
ett allmänt kritiskt förhållningssätt. En annan aspekt som inte heller föränd-
ras i fackdebatten kring realskolans geometriundervisning var att diskussio-
nerna var fokuserade på den axiomatiska metoden; hur kunde bevisen ut-
vecklas, hur kunde man få eleverna att förstå värdet av bevis, mm. Andra 
frågor, så exempelvis problemlösning diskuterades mycket litet. En sådan 
diskussion hade dock inte varit irrelevant. Om man ser till examensproven i 
matematik vid realskolan, så var det viktigare att kunna lösa problem än att 
kunna presetera bevis enligt läroboken för att lyckas på provens geometri-
uppgifter. 
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Appendixes 

A – Prop.I.5 in Euclid’s Elements  
Heath’s edition. Heath (1956), pp. 251-252 

In isosceles triangles the angles at the base are equal to one another, and, if 
the equal straight lines be produced further, then the angles under the base 
will be equal to one another. 

Let ABC be an isosceles triangle having the side AB equal to the side AC, 
and let the straight lines BD, CE be produced further in a straight line with 
AB, AC. (Post. 2) 

 

I say that the angle ABC is equal to the angle ACB, and the angle CBD to the 
angle BCE. 

Let a point F be taken at random on BD; from AE the greater let AG be cut 
off equal to AF the less (I.3); and let straight lines FC, GB be joined. (Post. 
3) 

Then, since AF is equal to AG and AB to AC, the two sides FA, AC are equal 
to the two sides GA, AB, respectively; and they contain a common angle, the 
angle FAG. 

Therefore the base FC is equal to the base GB, and the triangle AFC is equal 
to the triangle AGB, and the remaining angles will be equal to the remaining 
angles respectively, namely those which the equal sides subtend, that is, the 
angle ACF to the angle ABG, and the angle AFC to the angle AGB. (I.4) 
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And, since the whole AF is equal to the whole AG, and in these AB is equal 
to AC, the remainder BF is equal to the remainder CG. 

But FC was also proved equal to GB; therefore the two sides BF, FC are 
equal to the two sides CG, GB respectively; and the angle BFC is equal to 
the angle CGB, while the base BC is common to them; therefore the triangle 
BFC is also equal to the triangle CGB, and the remaining angles will be 
equal to the remaining angles respectively, namely those which the equal 
sides subtend; therefore the angle FBC is equal to the angle GCB, and the 
angle BCF to the angle CBG. 

Accordingly, since the whole angle ABG was proved equal to the angle ACF, 
and in these the angle CBG equals the angle BCF, the remaining angle ABC 
equals the remaining angle ACB, and they are at the base of the triangle 
ABC. But the angle FBC was also proved equal to the angle GCB, and they 
are under the base. 

Therefore etc.    Q.E.D. 

B – Olson’s list of axioms 
Olson (1940), p. 2 
1. The whole is larger than each of its parts but equal to the sum of the 

parts. 
2. Those which are equal to one and the same are mutually equal. 
3. That which is larger then one of two equals is also larger than the other. 
4. That which is smaller than one of two equals is also smaller than the 

other. 
5. If equals are added to equals, the sums are equal. 
6. If equals are reduced by equals, the differences are equal. 
7. The same multiples or parts of equals are equal. 
8. If one quantity is larger than another and the quantities are increased 

(decreased) by equals, then the first sum (difference) is larger than the 
other. 

9. Hereby we assume as self-evident that lines and figures that we imagine 
to change position in space thereby do not undergo any kind of change 
with respect to shape and size. 

10. Through a point, only one straight line can be drawn parallel to a given 
straight line. 
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C – Sjöstedt’s list of axioms 
Sjöstedt (1936), pp. 12-14 
1. Through two points, only one straight line can run. 
2. Through a point outside a straight line, only one straight line can run parallel to 

the latter. 
3. If a distance in a figure changes size from one value to another, then it runs 

through every value between these.464 
4. Quantities that are equally great can replace each other. 
5. The whole is greater than each of its parts. 
6. If one quantity is greater than another that is greater than a third, then the first is 

greater than the third. 
7. If equals are increased by equal, the sums are equal. 
8. If equals are decreased by equal, the differences are equal. 
9. If one quantity is greater than another and both are increased by equals, then the 

former sum is greater than the latter. 
10. If one quantity is greater than another and both are decreased by equals, then the 

former difference is greater than the latter. 
11. Quantities that can cover each other are equal in size. 

D – List of theorems in the first chapter of Asperén’s 
textbook 
The numbing of Euclid’s propositions is taken from Heath’s edition. 

Table 10.  

Propositions, Asperén Propositions, Euclid 

Th.II.c I.13 
Th.II.d I.15 
Th.III.a - 
Th.III.b - 
Prob.4 I.12 
Prob.5 I.11 
Prob.6 I.10 
Prop.7 I.9 
Prop.8 I.23 
Th.IV.a - 
Th.IV.b - 
Th.IV.c - 
Th.IV.d - 
Th.V.a I.27 
Prob.9 I.31 
Axiom of parallels  
Th.V.b Post.5 
Th.V.c I.29 
Th.VI I.20 
                               
464 Sjöstedt (1936), pp. 12-13 
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Prob.10 I.22 
Th.VII.a-b I.32 
Th.VIII.a I.5 
Th.VIII.b I.18 
Th.VIII.c I.6 
Th.VIII.d I.19 
Prob.11 - 
Th.IX.a I.4 
Th.IX.b I.24 
Th.X.a I.8 
Th.X.b I.25 
Prob.12 - 
Th.XI I.26 
Prob.13 - 
Th.XII - 
 

E – Outline of the first chapter of Sjöstedt’s textbook 
The numbing of Euclid’s propositions is taken from Heath’s edition. 

Table 11.  

Propositions, Sjöstedt Propositions, Euclid 

  
Axioms  
  
I. Straight lined diagrams  
  
1. Angles  
1 I.13 
2 I.15 
2. The congruence of triangles   
3 I.4 
4 - 
5 I.5 
6 I.6 
7 I.8 
8 I.22 
3. Some basic constructions  
14 - 
15 I.27 
16 I.31 
17 I.28 
18 I.28 
19 I.29 
20 Alt. I.29 
21 Alt. I.29 
5. The sum of angles in a triangle  
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22 I.32 
23 I.32 
24 I.26 
6. Sides and angles in triangles  
25 I.25 
26 I.24 
27 I.20 
28 - 
29 - 
30 I.24 
31 I.25 
32 - 
7. Parellelograms  
33 I.34 
34 - 
35 - 
8. Figures with equal surfaces  
36 I.35 
37 I.41 
38 I.47 

 

F – Nyhlén’s list of axioms 
Nyhlén (1947), pp. 2-18 
1. Through two points there can run only one straight line. 
2. If AB is a distance and A´ is a point on a straight line, then you can de-

termine exactly one point B´, on each side of A´, so that A´B´ equals AB. 
3. If two distances equals a third, then they are mutually equal. 
4. If two distances equal two other distances respectively, then the sum of 

the former equals the sum of the latter. 
5. If AOB is an angle and O´A´ is a ray, then you can determine exactly one 

ray O´B´ on each side of the line O´A´, so the 	 A´O´B´ equals 	 AOB. 
6. If two angles equals a third, then they are mutually equal. 
7. If two angles equal two other angles respectively, then the sum of the 

former equals the sum of the latter. 
8. Construct an � ABC. Allocate 	 A´ = 	 A and on the legs the points B´ 

and C´ so that A´B´ = AB and A´C´ = AC. Draw B´C´. Compare BC and 
B’C’, 	 B and 	 B´ and 	 C and 	 C´ by means of transporters. 

9. Parallel lines generate equal alternate angles with each transversal. 
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