V — Structured Data Analysis

Brigitte.LeRoux@math-info.univ-paris5.fr rouanet@math-info.univ-paris5.fr www.math-info.univ-paris5.fr/~lerb/ www.math-info.univ-paris5.fr/~rouanet/

1 Structuring factors

The basic sets for MCA (active individuals and variables) may be built from structuring factors.

Example: EPGY (Educational Program for Gifted Youth)

Two factors:

- 1. Topics: Integers, Fractions, Geometry, Logic, Measurement
- 2. Type of variables: error rates, latencies, number of exercises

Hence $5 \times 3 = 15$ active Variables.

Structuring factors on active individuals: Number of hours on computer, gender, age.

2 Conventional techniques for handling structured data

Analysis of variance: ANOVA, MANOVA

Regression

Structured Data Analysis integrates ANOVA and Regression into GDA.

3 From experimental to observational data

• Experimental data: factors or independent variables vs dependent variables.

Effects on factors on dependent variables

• Observational data: example of educational study

Structuring factors (I): age, gender, ...: predictors

positions of individuals in space: "dependent" or to be predicted

Structuring factor (II): final exam

position in space: predictors

success to exam to be predicted

Supplementary variables vs structuring factors

Recall property:

one-one correspondence between modalities (in the cloud of modalities) and mean-point modalities (in cloud of individuals). Example: age classes

Limitation of supplementary modalities: amounts to confining to mean–point modalities

The case of Bourdieu's La Distinction.

4 Breakdown of variance

Structuring factors induce a "factorial design", hence

- main effects,
- between and within effects,
- interaction effects

Warning: non-orthogonality of structuring factors

Breakdown of variance for a partition of individuals

Between-cloud, between-variance, within-variance double breakdown of variance according to partition and axes

Culture Example: Age and principal axes

	Abs.	Variances		
Age	${ m freq}.$	Axis 1	Axis 2	Axis 3
18-25	449	.1931	.1884	.1938
26-35	574	.2102	.2400	.2157
36-45	520	.2057	.2331	.2101
46-55	394	.2730	.2013	.2183
56-65	317	.2626	.1910	.2074
> 65	466	.2789	.2145	.1793
within		.2335	.2146	.2042
between		.0591	.0270	.0207
$\mathrm{total}\ (\lambda)$.2925	.2415	.2248

Regression of axis 1 to 3 on Age

Regression of axis 1 to 3 on Gender

5 Concentration ellipses

Culture example: Age (see III).

Concentration vs confidence (see VI).

REFERENCES

- LE ROUX B., & ROUANET H. (2004). Geometric Data Analysis; From Correspondence Analysis to Structured Analysis. Dordrecht: Kluwer (chapter 6, p.251-258)
- LE ROUX B. & ROUANET H. (2003). Geometric Analysis of Individual Differences in Mathematical Performance for EPGY Students in the Third Grade. www-epgy.stanford.edu/research/.