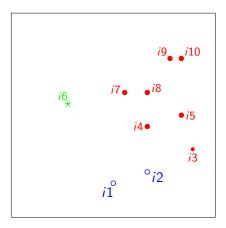
V — Structured Data Analysis

Reference:

B. Le Roux, L'analyse géométrique des données multidimensionnelles, Dunod 2014, Chapter 9.

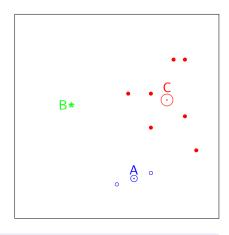

V 1 Partition of a Cloud: Between- and Within-variance

Subclouds

A: subcloud of 2 points (dipole) $\{i1, i2\}$

B: subcloud of 1 point {*i*6}

C: subcloud of 7 points {*i*3, *i*4, *i*5, *i*7, *i*8, *i*9, *i*10}


Partition of a cloud into 3 subclouds: A, B and C.

3 mean points A, B, C with weights 2, 1, 7.

By grouping:

- points "average up"
- weights add up

	weights	Coord X_1	inates X2	variances
Α	$n_A=2$	3	-11	10
В	$n_B=1$	-8	2	0
C	$n_C = 7$	8.857	2.857	46.57
	n = 10	$\overline{x}_1 = 6$	$\overline{x}_2 = 0$	34.6

The mean of the variances of subclouds defines the within-variance

Between-cloud

The 3 mean points (A,2), (B,1) et (C,7) define the between-cloud.

The between-cloud is a weighted cloud;

- its total weight is n = 10;
- its mean point is G;
- its variance, called between-variance, is the variance of the mean points

$$\frac{2}{10}(GA)^2 + \frac{1}{10}(GB)^2 + \frac{7}{10}(GC)^2 = 57.4$$

Contributions of a subcloud

The *contribution of a subcloud* is the sum of the contributions of its points.

The within-contribution of a subcloud is the product of its weight by its variance and divided by $V_{\rm cloud}$.

— Example: subcloud A

$$\begin{array}{c} \mathsf{Ctr}_{i1} = \frac{\frac{1}{10}(\mathrm{GM}^{i1})^2}{92} = \frac{\frac{1}{10}\times 180}{92} = \frac{18}{92}; \quad \mathsf{Ctr}_{i2} = \frac{\frac{1}{10}(\mathrm{GM}^{i2})^2}{92} = \frac{\frac{1}{10}\times 100}{92} = \frac{10}{92} \\ \bullet \text{ contribution of the } \textit{subcloud} : \; \mathsf{Ctr}_{\mathcal{A}} = \frac{18}{92} + \frac{10}{92} = \frac{28}{92} \end{array}$$

- Contribution of the subcloud. Cit $A = \frac{2}{92} + \frac{2}{92} = \frac{2}{92}$
- contribution of the mean point: $Ctr_A = \frac{\frac{2}{10} \times 130}{92} = \frac{26}{92}$
- within–contribution: $\frac{\frac{2}{10} \times 10}{92} = \frac{2}{92}$

Huyghens theorem

The contribution of a subcloud is the sum of the contribution of its mean point and of its within-contribution.

Example: Subcloud A

$$\mathsf{Ctr}_{\mathcal{A}} = \mathsf{Ctr}_{A} + \mathsf{within}\text{--contribution}$$

$$\frac{28}{92} = \frac{26}{92} + \frac{2}{92}$$

Between-within decomposition of variance

	$Ctr \! imes \! V_{\mathrm{cloud}}$							
	mean points	subclouds						
${\mathcal A}$	26.0	2.0	28					
${\cal B}$	20.0	0	20					
$\mathcal C$	11.4	32.6	44					
Total	57.4	34.6	92					
Variance	between	within	total					

Within-variance

= sum of within-contributions
$$\times V_{\rm cloud}$$

= weighted mean of variances of subclouds
$$(\frac{2}{10} \times 10 + 0 + \frac{7}{10} \times 46.6)$$

= 34.6

$$\eta^2 = \frac{\text{between-variance}}{\text{total variance}} \text{ (eta-square)}$$

V.2. Cognitive Tests and Education

Research on metacognitive factors in scientific problem–solving strategies (P. Rozencwajg)

Individuals: 12-13-year old seventh graders from two middle schools in the metropolitan Paris area.

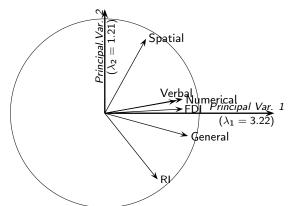
Schools a_1 underprivileged socioeconomic environment with 5 boys and 9 girls;

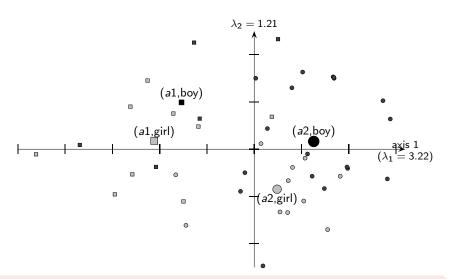
a₂: medium-level socioeconomic environment with 17 boys and 11 girls.

Variables: 6 cognitive tests

- General intelligence test (g-factor test)
- Numerical test
- Verbal test
- Spatial test
- FDI ("field dependence-independence") test
- RI (reflective-impulsive) cognitive test

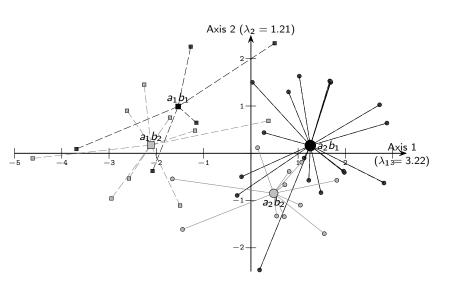
multivariate numerical data (table Students × Cognitive tests) two structuring factors: Gender and Status (socioeconomic environment).

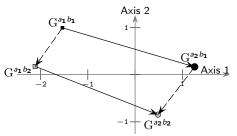

The aim of the study is to figure out to what extent *Status* and *Gender* explain the position of students in the cognitive space.


PCA: Construction of the cognitive space Structured Data Analysis

Cognitive space: PCA

 $\lambda_1 = 3.219$ $\lambda_2 = 1.213$ $\lambda_3 = 0.590$ $\lambda_4 = 0.478$ $\lambda_5 = 0.314$ $\lambda_6 = 0.186$ variance Variance rate $\tau_1 = .537$ $\tau_2 = .202$ $\tau_3 = .098$ $\tau_4 = .080$ $\tau_5 = .0.052$ $\tau_6 = .031$

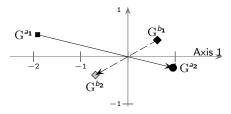

Correlati	ons	General	Numerical	Verbal	Spatial	FDI	RI
Axis 1 Axis 2 Plane 1-2	$r_{\ell 1} \\ r_{\ell 2} \\ R_{1-2}$	$0.881 \\ -0.241 \\ 0.913$	0.825 0.150 0.838	0.757 0.132 0.768	0.437 0.788 0.901	0.828 0.045 0.829	$0.560 \\ -0.701 \\ 0.897$


Axis 1 is an axis of general cognitive abilities.

Axis 2 is an axis of processing speed.

Between–groups cloud $(G^{A \times B})$

Coordinates	weights	Axis 1	Axis 2
$G^{a_1b_1}$	5	-1.538	0.990
$G^{a_1b_2}$	9	-2.115	0.174
$\widetilde{\mathrm{G}}^{a_{2}b_{1}}$	17	1.258	0.164
$G^{a_2b_2}$	11	0.484	-0.847
$\operatorname{Var} G^{A \times B}$		1.943	0.322

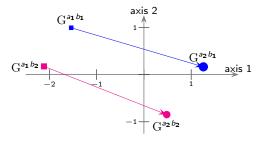

Overall variance = 3.219 + 1.213 = 4.432; between-groups variance = 1.943 + 0.322 = 2.265; $\eta^2 = 2.265/4.432 = 0.51$.

Descriptively, the global difference between the four groups is large.

Status main effect and Gender main effect

Coordinates	n	Axis 1	Axis 2
G^{a_1}	14	-1.909	0.466
G^{a_2}	28	0.954	-0.233
$\operatorname{Var} G^{A}$	42	1.822	0.108

Coord	linates	n	Axis 1	Axis 2
(1 b ₁	22	0.623	0.352
C	1 b ₂	20	-0.686	-0.387
₂ Var	r G^B	42	0.427	0.136

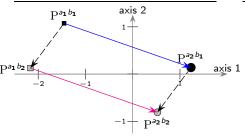

Axis

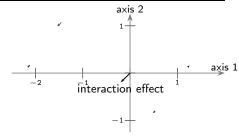
between–Status variance: 1.822 + 0.108 = 1.930, hence 85% of the variance of the $Status \times Gender$ cloud; $\eta^2 = 0.44$ to 0.44 (quite a large value).

between–Gender variance: 0.427 + 0.136 = 0.563, hence 25% of the variance of the Status×Gender cloud and $\eta^2 = 0.13$ (a large value).

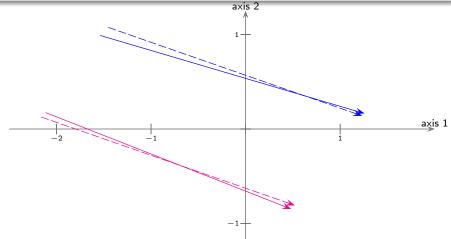
Descriptively, the difference between the two socioeconomic statuses and that between boys and girls are large.

Effect of Status within-Gender

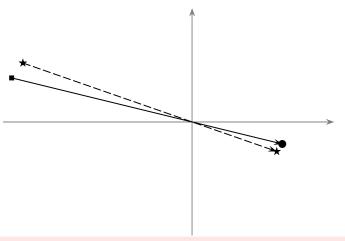



	weights	Axis 1	Axis 2	Plane 1-2
$\operatorname{Var} \mathrm{G}^{A/b_1}$	14	1.373	0.120	1.493
$\operatorname{Var} \mathbf{G}^{A/b_2}$	28	1.671	0.258	1.930
$\operatorname{Var} \operatorname{G}^{A_{within}B}$	42	1.515	0.186	1.701

Additive cloud


Coordinates	n	Axis 1	Axis 2
$P^{a_1b_1}$	5	-1.452	1.075
$P^{a_1b_2}$	9	-2.163	0.127
$P^{a_2b_1}$	17	1.234	0.139
$P^{a_2b_2}$	11	0.523	-0.808
$\operatorname{Var} \mathbf{P}^{A+B}$	42	1.941	0.320

Coordinates	n	Axis 1	Axis 2
$G^{a_1b_1} - P^{a_1b_1}$	5	-0.0859	-0.0850
$G^{a_1b_2} - P^{a_1b_2}$	9	0.0477	0.0472
$G^{a_2b_1}-P^{a_2b_1}$	17	0.0253	0.0250
$\mathrm{G}^{a_2b_2}-\mathrm{P}^{a_2b_2}$	11	-0.0390	-0.086
Variances	42	0.00202	0.00198



In the first principal plane, the variance of the additive cloud (1.941 + 0.320 = 2.260) takes into account 99.8% of the variance of the $Status \times Gender$ cloud and 51% of the variance of the overall cloud (η^2 coefficient is equal to 2.260/4.432 = 0.51, a value that is quite large).

Structure effect

Structure effect and interaction are two different things.

Decompositions of variance

Three additive decompositions of variances of the $Status \times Gender$ cloud: additive)+(interaction)

Status+(Gender within-Status)

Gender+(Status within-Gender)

	Status× Gender	additive	inter- action	Gender v	Status vithin-Gender	Status w	Gender rithin-Status
Axis 2	1.943	1.941	0.002	0.427	1.515	1.822	0.121
Axis 1	0.322	0.320	0.002	0.136	0.186	0.108	0.213
Plane 1-	2 2.265	2.261	0.004	0.563	1.701	1.930	0.334

Descriptive findings

The geometric analysis (pca) shows that the structure of the cognitive space is mainly two-dimensional,

pause and, by studying the cloud of students, it shows that, in the cognitive space,

- the four groups are well differentiated;
- the interaction effect between factors is nearly null, that is, the crossing of the two factors can be adjusted by an additive model;
- the main effect of Status and that of Gender are both of large magnitude.