This document is an historical remnant. It belongs to the collection Skeptron Web Archive (included in Donald Broady's archive) that mirrors parts of the public Skeptron web site as it appeared on 31 December 2019, containing material from the research group Sociology of Education and Culture (SEC) and the research programme Digital Literature (DL). The contents and file names are unchanged while character and layout encoding of older pages has been updated for technical reasons. Most links are dead. A number of documents of negligible historical interest as well as the collaborators' personal pages are omitted.

The site's internet address was since Summer 1993 www.nada.kth.se/ ~broady/ and since 2006 www.skeptron.uu.se/ broady/ sec/ .

Geometric Data Analysis

Brigitte Le Roux

Brigitte.LeRoux@mi.parisdescartes.fr www.mi.parisdescartes.fr/~lerb/
${ }^{1}$ MAP5/CNRS, Université Paris Descartes
${ }^{2}$ CEVIPOF/CNRS, SciencesPo Paris

GDA course - Sept. 12-16, 2016 Uppsala

Table of Contents I

I - Introduction

- Three Key Ideas
- Three Paradigms
- Historical Sketch

II - Principal Axes of a Euclidean Cloud

- Basic Geometric Notions
- Cloud of Points
- Principal Axes of a Cloud
- From a Plane Cloud to a Higher Dimensional Cloud
- Properties and Aids to Interpretation

3 III - Multiple Correspondence Analysis

- Principles of MCA
- Taste example
- Cloud of Individuals
- Cloud of Categories

Table of Contents II

- Principal Clouds
- Aids to Interpretation: Contributions
- MCA of the Taste Example
- Transition Formulas
- Interpretation of the Analysis of the Taste Example

4) IV - Cluster Analysis

- Introduction
- Partition of a Cloud: Between- and Within-variance
- K-means Clustering
- Ascending Hierarchical Clustering (AHC)
- Euclidean Clustering
- Interpretation of clusters
- Other Aggregation Indices
- Divisive Hierarchical Clustering

5 V - Specific MCA and CSA

Table of Contents III

- Introduction
- Specific MCA
- Class Specific Analysis (CSA)

I - Introduction

Brigitte Le Roux

Brigitte.LeRoux@mi.parisdescartes.fr www.mi.parisdescartes.fr/~lerb/

I.1. Three Key Ideas

- Geometric modeling

Data table

Clouds

Cloud of categories: Points represent the categories of variables.

Cloud of individuals: Points represent individuals.

- Formal approach.
- Description first!

The model should follow the data, not the reverse!"

I.2. Three Paradigms

- Correspondence Analysis (CA)
\longrightarrow Contingency table
- Principal Component Analysis (PCA)
\longrightarrow Individuals \times Numerical Variables table
- Multiple Correspondence Analysis (MCA)
\longrightarrow Individuals \times Categorical Variables table

I.3. Historical Sketch

J-P. Benzécri (1982)

Precursors
 Karl Pearson (1901), Hirschfeld (1935).

Should we need an Anglo-Saxon patronage for "Analyse des Données", we would be pleased to turn to the great Karl Pearson.

Benzécri (1982), p. 116

- Optimal scaling: Fisher (1940), Guttman (1942)
- Factor analysis: Burt (1950)
- Quantification method: Hayashi (1952)
- MDS: Shepard (1962).

Emergence (1963-73)

L'ANALYSE Des DONNEES

1Gavione

DUHOD

Benzécri et al. (1973): L'ANALYSE Des DONNÉES 1 la TAXINOMIE 2 L'ANALYSE DES CORRESPONDANCES.

Recognition and splendid isolation (1973-1980

1977-1997

Gower (1966), Good (1969), Gabriel (1971) Ignored in Shepard, Romney, Nerlove (1972), Kruskal \& Wish (1978), Shepard (1980) and in Kendall \& Stuart (1976)

International recognition (since 1981)

Greenacre (1984), Lebart \& al (1984), Jambu (1991), Benzécri (1992) (translation of the introductory book published by Dunod in 1984);
Malinvaud (1980), Deville \& Malinvaud (1983):

"Econometrics without stochastic models"

Tenenhaus \& Young (1985) : Psychometry;
Nishisato (1980): Dual Scaling;
Gifi (1981/1990): Homogeneity Analysis;
Carroll \& Green (1988), Weller \& Romney (1990): MDS group; Gower \& Hand (1996): biplot.

Where do we stand now?

Goodman (1986, 1991), Weller \& Romney (1990), Rao (1995).
CARME network: international conferences in Cologne (1991, 1995, 1999), Barcelona (2003), Rotterdam (2007), Rennes (2011), Naples (2015) ...

Workshops organized in Paris, Uppsala, Copenhagen, Montreux, London, Kaliningrad, Mendoza, Berkeley ...
Recent Books:

Le Roux \& Rouanet 2004

Geometric Data Analysis

Bripite Le Roux
Hown Thowiset

Murtagh 2005

CARME
2003 (2006)
Le Roux \& Rouanet 2010

Brigitte Le Roan
Analyse géométrique des données
multidimensionnelles

DUNOD

CARME

 2011 (2015)

Lebaron \& Le Roux (eds)

 2015

Sous la direction de Frédéric Lebaron et Brigitte Le Roux
La méthodologie de Pierre Bourdieu en action

Espace culturel, espace social et analyse des données

CA is now recognized and used, but GDA as a whole methodology, is waiting to be discovered by a large audience.

II - Principal Axes of a Euclidean Cloud

This text is adapted from Chapter 2 of the monograph Multiple Correspondence Analysis (QASS series n¹63, SAGE, 2010)

II.1. Basic Geometric Notions

Elements of a geometric space: points, line, plane.

- Affine notions: alignment, direction and barycenter.

Couple of points (P, M), or dipole \longrightarrow vector $\overrightarrow{\mathrm{PM}}$
The deviation from point P to point M is $\mathrm{M}-\mathrm{P}$ ("terminal minus initial"), that is, $\overrightarrow{P M}$.

Deviations add up vectorially: sum of vectors by parallelogram law

Barycenter of a dipole

$$
\overrightarrow{\mathrm{PG}}=\frac{3}{5} \overrightarrow{\mathrm{PA}}+\frac{2}{5} \overrightarrow{\mathrm{~PB}}
$$

Barycenter $=$ weighted average of points: $G=\frac{a A+b B}{a+b}$

- Metric notions: distances and angles.

Triangle inequality:

$$
\mathrm{PQ} \leq \mathrm{PM}+\mathrm{MQ}
$$

Pythagorean theorem:
If PM and MQ are perpendicular then:

$$
(\mathrm{PM})^{2}+(\mathrm{MQ})^{2}=(\mathrm{PQ})^{2}
$$

(triangle MPQ with right angle at M),

II.2. Cloud of Points

Figure 1. Target example (10 points)

Figure 1b. Cloud of 10 points with origine-point O and initial axes

Initial coordinates

	x_{1}	χ_{2}	weights
$i 1$	0	-12	,
12	6	-10	1
13	14	-6	1
14	6	-2	1
i5	12	0	1
$i 6$	-8	2	1
17	2	4	1
18	6	4	1
$i 9$	10	10	1
$i 10$	12	10	1
Means	6	0	[10]
ariances	40	52	
variance		+8	

Mean point: point G

$$
\overrightarrow{\mathrm{OG}}=\sum p_{i} \overrightarrow{\mathrm{OM}}^{i} \quad \sum p_{i}{\overrightarrow{\mathrm{GM}^{i}}}^{i}=\overrightarrow{0} \text { (barycentric property) }
$$

Target Example: $p_{i}=\frac{1}{n} \quad\left(p_{i}=\frac{1}{10}\right)$

Variance of a cloud :

$$
V_{\text {cloud }}=\sum p_{i}\left(\mathrm{GM}^{i}\right)^{2}
$$

(see Benzécri 1992, p.93)

Property

In rectangular axes, the variance of the cloud is the sum of the variances of the coordinate variables.

Contribution of point M^{i} :

$$
\operatorname{Ctr}_{i}=\frac{p_{i}\left(\mathrm{GM}^{i}\right)^{2}}{V_{\text {cloud }}}
$$

II.3. Principal Axes of a Cloud

Projection of a cloud

$\mathrm{P}^{\prime}=$ projection of point P onto \mathcal{L} along \mathcal{L}^{\prime} $\overrightarrow{\mathrm{P}^{\prime} \mathrm{P}}=$ residual deviation

If point M is the midpoint of P and Q, the point M^{\prime}, projection of M on \mathcal{L}, is the midpoint of P^{\prime} and Q^{\prime}.

Mean point property

The mean point is preserved by projection.

Orthogonal projection: PP^{\prime} is perpendicular to \mathcal{L}.

The orthogonal projection contracts distances: $\mathrm{P}^{\prime} \mathrm{Q}^{\prime} \leq \mathrm{PQ}$, therefore one has the

Property

variance of projected cloud \leq variance of initial cloud.

Projected clouds on several lines

variance=40

variance $=52$

Orthogonal additive decomposition

The variance of the initial cloud is the sum of the variances of projected clouds onto perpendicular lines: $V_{\text {cloud }}=40+52=92$.

Projection onto an oblique line (60 degrees) : variance $=55.9$

Variance	\mathcal{D}_{1}	\mathcal{D}_{2}	\mathcal{D}_{3}	\mathcal{D}_{4}	\mathcal{D}_{5}	\mathcal{D}_{6}	\mathcal{D}_{1}
	52	42.1	36.1	40.0	49.9	55.9	52

The line whose the variance of the projected cloud is maximum is called first principal line. directed line \rightarrow 1st principal axis Projected cloud = 1st principal cloud
its variance $\left(\lambda_{1}\right)=$ variance of axis 1

The first principal cloud is the best fitting of the initial cloud by an unidimensional cloud in the sense of orthogonal least squares
Here, $\alpha=63^{\circ}, \lambda_{1}=56$.

One constructs the residual cloud.
The first principal line of the residual cloud defines the second principal line of the initial cloud.
Here, the cloud is a plane cloud (two dimensions), hence the second axis is simply the perpendicular to the first axis.

Principal representation of the cloud.

II.4. From a Plane Cloud to a Higher Dimensional Cloud

Heredity property

The plane that best fits the cloud is the one determined by the first two axes.

High dimensional cloud.

Low dimensional projection.

II.5. Properties

- Variance of cloud $=$ sum of variances of axes: $V_{\text {cloud }}=\sum \lambda_{\ell}$.
- The principal axes are pairwise orthogonal.

Each axis can be directed arbitrarily.

- The principal coordinates of points define principal variables.
mean $=0$ and variance $=\lambda$ (eigenvalue)
Principal variables are uncorrelated (for distinct eigenvalues).
- Reconstitution of distances between points:

$$
d^{2}(i 1, i 2)=(-13.4+8.9)^{2}+(0-4.47)^{2}=4.23=(6.3)^{2}
$$

Aids to Interpretation

- Quality of fit of an axis or variance rate:

$$
\frac{\lambda}{V_{\text {cloud }}}
$$

- Contribution of point to axis:
$\mathrm{Ctr}=\frac{p(y)^{2}}{\lambda}$
($p=$ relative weight, $y=$ coordinate on axis)
- Quality of representation of point onto axis:

$$
\cos ^{2} \theta=\frac{\mathrm{GP}^{2}}{\mathrm{GM}^{2}}
$$

Example: for $i 2, \cos ^{2} \theta=\frac{(-8.94)^{2}}{100}=0.80$

Results of the analysis

$\lambda_{1}=56$ (variance of axis 1, eigenvalue).
Variance rate : $\frac{\lambda_{1}}{V_{\text {cloud }}}=\frac{56}{92}=61 \%$

Results for axis 1

p_{i}		$\lambda_{1}=56$			$\lambda_{1}=36$		
		$\begin{array}{\|c\|} \hline \text { Coor- } \\ \text { dinates } \end{array}$	Ctr (\%)	squared cosines	$\begin{array}{\|c\|} \hline \text { Coor- } \\ \text { dinates } \\ \hline \end{array}$	Ctr (\%)	$\begin{aligned} & \hline \text { squared } \\ & \text { cosines } \end{aligned}$
$i 1$	0.1	-13.41	32.1	1.00	0.00	0	0.00
$i 2$	0.1	-8.94	14.3	0.80	+4.47	5.6	0.20
$i 3$	0.1	-1.79	0.6	0.03	+9.84	26.9	0.97
$i 4$	0.1	-1.79	1.3	0.80	+0.89	0.2	0.20
i5	0.1	+2.68	3.6	0.20	+5.37	8	0.80
$i 6$	0.1	-4.47	3.6	0.10	-13.42	50.0	0.90
$i 7$	0.1	+1.79	0.6	0.10	-5.37	8	0.90
i8	0.1	+3.58	2.3	0.80	-1.79	0.9	0.20
i9	0.1	+10.73	20.6	0.99	-0.89	0.2	0.01
i10	0.1	+11.63	24.1	0.99	+0.89	0.2	0.01

III - Multiple Correspondence Analysis (MCA)

This text is adapted from Chapter 3 of the monograph Multiple Correspondence Analysis (QASS series $n^{\circ} 163$, SAGE, 2010)

III.1. Introduction

Language of questionnaire
Basic data set: Individuals \times Questions table

- Questions = categorical variables, i.e. variables with a finite number of response categories, or modalities.
- Individuals or "statistical individuals": (people, firms, items, etc.).

"Standard format"

for each question, each individual chooses one and only one response category.
\rightarrow otherwise: preliminary phase of coding

III.2. Principles of MCA

Notations:
I : set of n individuals;
Q : set of questions
K_{q} : set of categories of question $q\left(K_{q} \geq 2\right)$
K : overall set of categories
n_{k} : number of individuals who have chosen category k (absolute frequency)
$f_{k}=\frac{n_{k}}{n}$ (relative frequency)

Table analyzed by MCA: $I \times Q$ table

MCA produces two clouds of points: the cloud of individuals and the cloud of categories.

III.3. Taste example

- Data
$Q=4$ active variables

Which, if any, of these different types of ... television programmes do you like the most?	n_{k}	f_{k} in $\%$
News/Current affairs	220	18.1
Comedy/sitcoms	152	12.5
Police/detective	82	6.7
Nature/History documentaries	159	13.1
Sport	136	11.2
Film	117	9.6
Drama		134
Soap operas		11.0
	Total	1215
		17.7

Which, if any, of these different types of ... (cinema or television) films do you like the most?	n_{k}	f_{k} in $\%$
Action/Adventure/Thriller	389	32.0
Comedy	235	19.3
Costume Drama/Literary adaptation	140	11.5
Documentary	100	8.2
Horror	62	5.1
Musical	87	7.2
Romance	101	8.3
SciFi	Total	1215
		101
		8.3

Which, if any, of these different types of ... art do you like the most?	n_{k}	f_{k} in $\%$	
Performance Art		105	8.6
Landscape	632	52.0	
Renaissance Art	55	4.5	
Still Life		71	5.8
Portrait	117	9.6	
Modern Art		110	9.1
Impressionism		125	10.3
	Total	1215	100.0

Which, if any, of these different types of ... place to eat out would you like the best?	n_{k}	$\begin{gathered} f_{k} \\ \text { in } \% \end{gathered}$
Fish \& Chips/eat-in restaurant/cafe/teashop	107	8.8
Pub/Wine bar/Hotel	281	23.1
Chinese/Thai/Indian Restaurant	402	33.1
Italian Restaurant/pizza house	228	18.8
French Restaurant	99	8.1
Traditional Steakhouse	98	8.1
Total	1215	100.0
$K=8+8+7+6=29$ categories		
$n=1215$ individuals		
$8 \times 8 \times 7 \times 6=2688$ possible response pattern observed.	only	

Extract from the Individuals \times Questions table

	TV	Film	Art	Eat out
1	Soap	Action	Landscape	SteakHouse
\vdots	\vdots	\vdots	\vdots	\vdots
7	News	Action	Landscape	IndianRest
\vdots	\vdots	\vdots	\vdots	\vdots
31	Soap	Romance	Portrait	Fish\&Chips
\vdots	\vdots	\vdots	\vdots	\vdots
235	News	Costume	Drama	Renaisssance
\vdots	\vdots	\vdots	\vdots	FrenchRest
679	Comedy	Horror	Modern	Indian
\vdots	\vdots	\vdots	\vdots	\vdots
1215	Soap	Documentary	Landscape	SteakHouse

A row corresponds to the response pattern of an individual

III.4. Cloud of Individuals

Distance between 2 individuals due to question q :

- if q is an agreement question: i and i^{\prime} choose the same category

$$
d_{q}\left(i, i^{\prime}\right)=0
$$

- if q is a disagreement question: i chooses category k and i^{\prime} chooses category k^{\prime} :

$$
d_{q}^{2}\left(i, i^{\prime}\right)=\frac{1}{f_{k}}+\frac{1}{f_{k^{\prime}}}
$$

Overall distance: $d^{2}\left(i, i^{\prime}\right)=\frac{1}{Q} \sum_{q \in Q} d_{q}^{2}\left(i, i^{\prime}\right)$
individual $i \longrightarrow$ point M^{i} with relative weight $p_{i}=\frac{1}{n}$
G: mean point (center) of the cloud
$\left(\mathrm{GM}^{i}\right)^{2}=\left(\frac{1}{Q} \sum_{k \in K_{i}} \frac{1}{k_{k}}\right)-1\left(K_{i}\right.$: response pattern of individual $\left.i\right)$.

Variance of the cloud of individuals

$$
V_{\text {cloud }}=\frac{K}{Q}-1
$$

(average number of categories per question minus 1).

III.5. Cloud of Categories

Distance between categories k and $k^{\prime}: d^{2}\left(k, k^{\prime}\right)=\frac{n_{k}+n_{k^{\prime}}-2 n_{k k^{\prime}}}{n_{k} n_{k^{\prime}} n}$
$n_{k}=$ number of individuals who have chosen k (resp. $n_{k^{\prime}}$);
$n_{k k^{\prime}}=$ number of individuals who have chosen both categories k et k^{\prime}.
category $k \longrightarrow$ category-point M^{k} with relative weight $p_{k}=f_{k} / Q$

Property

G is the mean point of the category-points of any question.
$\left(\mathrm{GM}^{k}\right)^{2}=\frac{1}{t_{k}}-1$.

- Variance of the cloud of categories: $=\frac{K}{Q}-1$.
- Contributions

Contribution of category k

$$
\mathrm{Ctr}_{k}=\frac{1-t_{k}}{K-Q}
$$

Contribution of question q

$$
\mathrm{Ctr}_{q}=\frac{K_{q}-1}{K-Q}
$$

III.6. Principal Clouds

- Principal axes

Fundamental properties

- The two clouds have the same variances (eigenvalues).
- $\sum_{\ell=1}^{L} \lambda_{\ell}=V_{\text {cloud }}$, with $\bar{\lambda}=\frac{V_{\text {cloud }}}{L}=\frac{1}{Q}$.
- Variance rates and modified rates

Variance rate:

$$
\tau_{\ell}=\frac{\lambda_{\ell}}{V_{\text {cloud }}}
$$

Modified rate:

$$
\tau_{\ell}^{\prime}=\frac{\lambda_{\ell}^{\prime}}{S} \text {, with } \lambda_{\ell}^{\prime}=\left(\frac{Q}{Q-1}\right)^{2}\left(\lambda_{\ell}-\bar{\lambda}\right)^{2} \text { and } S=\sum_{\ell=1}^{\ell_{\text {max }}} \lambda_{\ell}^{\prime}
$$

- Principal coordinates and principal variables

y_{ℓ}^{i} : coordinate of individual i on axis ℓ
$y_{\ell}^{\prime}=\left(y_{\ell}^{\prime}\right)_{i \in 1}: \ell$-th principal variable over I
y_{ℓ}^{k} : coordinate of category k on axis ℓ

$$
y_{\ell}^{K}=\left(y_{\ell}^{k}\right)_{k \in K}: \ell \text {-th principal variable over } K
$$

Properties

Mean of principal variable is null:

$$
\sum \frac{1}{n} y_{\ell}^{i}=0 \text { and } \sum p_{k} y_{\ell}^{k}=0
$$

Variance of principal variable ℓ is equal to λ_{ℓ} :

$$
\sum \frac{1}{n}\left(y_{\ell}^{i}\right)^{2}=\lambda_{\ell} \text { and } \sum p_{k}\left(y_{\ell}^{k}\right)^{2}=\lambda_{\ell}
$$

Principal variables are pairwise uncorrelated:

$$
\ell \neq \ell^{\prime} \quad \sum y_{\ell}^{i} y_{e l \prime^{\prime}}^{i}=0 \quad \sum y_{\ell}^{k} y_{e l l^{\prime}}^{k}=0
$$

III.7. Aids to Interpretation: Contributions

Contribution of category-point k to axis $\ell: \frac{p_{k}\left(y_{\ell}^{k}\right)^{2}}{\lambda \ell}$ (y : coordinate of point on axis; p : relative weight; λ : variance of axis)

By grouping, contributions add up \longrightarrow contribution of question...

The quality of representation of point M^{k} on Axis ℓ is

$$
\cos ^{2} \theta_{k \ell}=\frac{\left(\mathrm{GM}_{\ell}^{k}\right)^{2}}{\left(\mathrm{GM}^{k}\right)^{2}}=\frac{\left(y_{\ell}^{k}\right)^{2}}{\left(\mathrm{GM}^{k}\right)^{2}}
$$

- Category mean points

$\overline{\mathrm{M}}^{\kappa}$: category mean point for k with coordinate on axis ℓ

$$
\bar{y}_{\ell}^{k}=\sqrt{\lambda_{\ell}} y_{\ell}^{k} \quad \text { (second transition formula) }
$$

The K category mean points of question q define the between-q cloud

- Supplementary elements: individuals and/or questions

III.8. MCA of the Taste Example

Data set
The data involve:

- $Q=4$ active variables
- $K=8+8+7+6=29$ categories
- $n=1215$ individuals

Overall variance of the cloud : $V_{\text {cloud }}=\frac{29}{4}-1=6.25$
Contributions of questions to the overall variance:

$$
\frac{8-1}{29-4}=28 \% \quad 28 \% \quad 24 \% \quad 20 \%
$$

Elementary statistical results

$8 \times 8 \times 7 \times 6=2688$ possible response patterns; 658 are observed.

TV	n_{k}	f_{k}	Ctr $_{k}$
News	220	18.1	3.3
Comedy	152	12.5	3.5
Police	82	6.7	3.7
Nature	159	13.1	3.5
Sport	136	11.2	3.6
Film	117	9.6	3.6
Drama	134	11.0	3.6
Soap operas	215	17.7	3.3
Films	1215	100.0	28.0
Action	389	32.0	2.7
Comedy	235	19.3	3.2
Costume Drama	140	11.5	3.5
Documentary	100	8.2	3.7
Horror	62	5.1	3.8
Musical	87	7.2	3.7
Romance	101	8.3	3.7
SciFi	101	8.3	3.7
	Total	1215	100.0

Art	n_{k}	f_{k}	Ctr_{k}
Performance	105	8.6	3.7
Landscape	632	52.0	1.9
Renaissance	55	4.5	3.8
Still Life	71	5.8	3.8
Portrait	117	9.6	3.6
Modern Art	110	9.1	3.6
Impressionism	125	10.3	3.6
Eat out	1215	100.0	24.0
Fish \& Chips	107	8.8	3.6
Pub	281	23.1	3.1
Indian Rest	402	33.1	2.7
Italian Rest	228	18.8	3.2
French Rest	99	8.1	3.7
Steakhouse	98	8.1	3.7
Total		1215	100.0
20.0			

Basic results of MCA

Dimensionality of the cloud $\leq K-Q=29-4=25$.
Mean of the variances of axes: $\frac{6.25}{25}=0.25$.
The variances of 12 axes exceed the mean.

Axes ℓ	1	2	3	4	5	6	7	8	9	10	11	12
variances $\left(\lambda_{\ell}\right)$.400	.351	.325	.308	.299	.288	.278	.274	.268	.260	.258	.251
variance rates	.064	.056	.052	.049	.048	.046	.045	.044	.043	.042	0.41	.040
modified rates	.476	.215	.118	.071	.050	.030	.017	.012	.007	.002	.001	.000

Principal coordinates and contributions of 6 individuals (in \%)

	Coordinates				Contributions (in \%)		
	Axis 1	Axis 2	Axis 3		Axis 1	Axis 2	Axis 3
1	+0.135	+0.902	+0.432		0.00	0.19	0.05
7	-0.266	-0.064	-0.438		0.01	0.00	0.05
31	+1.258	+1.549	-0.768		0.33	0.56	0.15
235	-1.785	-0.538	-1.158		0.65	0.07	0.34
679	+1.316	-1.405	-0.140		0.36	0.46	0.00
1215	-0.241	+1.037	+0.374		0.01	0.25	0.04

Relative weight, principal coordinates and contributions (in \%) of categories

Television	p_{k}	Axe 1	Axe 2	Axe 3	Axe1	Axe 2	Axe 3
TV-News	. 0453	-0.881	-0.003	-0.087	8.8	0.0	0.1
TV-Comedy	. 0313	+0.788	-0.960	-0.255	4.9	8.2	0.6
TV-Police	. 0169	+0.192	+0.405	+0.406	0.2	0.8	0.9
TV-Nature	. 0327	-0.775	-0.099	+0.234	4.9	0.1	0.6
TV-Sport	. 0280	-0.045	-0.133	+1.469	0.0	0.1	18.6
TV-Film	. 0241	+0.574	-0.694	+0.606	2.0	3.3	2.7
TV-Drama	. 0276	-0.496	-0.053	-0.981	1.7	0.0	8.2
TV-Soap	. 0442	$+0.870$	+1.095	-0.707	8.4	15.1	6.8
Film				Total	30.7	27.7	38.4
Action	. 0800	-0.070	-0.127	+0.654	0.1	0.4	10.5
Comedy	. 0484	+0.750	-0.306	-0.307	6.8	1.3	1.4
CostumeDrama	. 0288	-1.328	-0.037	-1.240	12.7	0.0	13.6
Documentary	. 0206	-1.022	+0.192	+0.522	5.4	0.2	1.7
Horror	. 0128	+1.092	-0.998	+0.103	3.8	3.6	0.0
Musical	. 0179	-0.135	+1.286	-0.109	0.1	8.4	0.1
Romance	. 0208	+1.034	$+1.240$	-1.215	5.5	9.1	9.4
SciFi	. 0208	-0.208	-0.673	+0.646	0.2	2.7	2.7
Art				Total	34.6	25.7	39.5
PerformanceArt	. 0216	+0.088	-0.075	-0.068	0.0	0.0	0.0
Landscape	. 1300	-0.231	$+0.390$	+0.313	1.7	5.6	3.9
RenaissanceArt	. 0113	-1.038	-0.747	-0.566	3.0	1.8	1.1
StillLife	. 0146	+0.573	-0.463	-0.117	1.2	0.9	0.1
Portrait	. 0241	+1.020	+0.550	-0.142	6.3	2.1	0.1
ModernArt.	. 0226	$+0.943$	-0.961	-0.285	5.0	5.9	0.6
Impressionism	. 0257	-0.559	-0.987	-0.824	2.0	7.1	5.4
Eat out				Total	19.3	23.5	11.2
							0.7
Pub	$.0578$	-0.283	$+0.627$	$+0.087$	1.2	6.5	0.1
IndianRest	. 0827	+0.508	-0.412	$+0.119$	5.3	4.0	0.4
ItalianRest	. 0469	-0.021	-0.538	-0.452	0.0	3.9	2.9
FrenchRest	. 0204	-1.270	-0.488	-0.748	8.2	1.4	3.5
Steakhouse	. 0202	-0.226	+0.780	+0.726	0.3	3.5	3.3
				Total	15.3	23.1	10.9

Cloud of categories in plane 1-2

Axis 2

Cloud of individuals in plane 1-2.

III.9. Transition Formulas

Transition formulas express the relation between the cloud of individuals and
the cloud of categories.

- First transition formula

cloud of categories \longrightarrow cloud of individuals: $y^{i}=\frac{1}{\sqrt{\lambda}} \sum_{k \in K_{i}} y^{k} / Q$

Category-point k is located at the equibarycenter of the n_{k} individuals who have chosen category k, up to a stretching along principal axes.

In terms of coordinates:

(1) mean of the 4 coordinates on axis 1 :

$$
\frac{-0.881-1.328-1.038-1.270}{4}=-1.12925
$$

mean of the 4 coordinates on axis 2 :

$$
\frac{-0.003-0.037-0.747-0.488}{4}=-0.31875
$$

(2) dividing the coordinate on axis 1 by $\sqrt{\lambda_{1}}$:

$$
y_{1}^{i}=\frac{-1.12925}{\sqrt{0.4004}}=-1.785
$$

dividing the coordinate on axis 2 by $\sqrt{\lambda_{2}}$

$$
y_{2}^{j}=\frac{-0.31875}{\sqrt{0.3512}}=-0.538
$$

which are the coordinates of the individual-point \#235.

- Second transition formula

cloud of individuals \longrightarrow cloud of categories: $y^{k}=\frac{1}{\sqrt{\lambda}} \sum_{i \in l_{k}} y^{i} / n_{k}$

Individual-point is located at the equibarycenter of the Q category-points of his response pattern, up to a stretching along principal axes.

III.10.Interpretation of the Analysis of the Taste Example

How many axes need to be interpreted?
Axis 1: $\left(\frac{\lambda_{1}-\lambda_{2}}{\lambda_{1}}=.12\right)$; modified rate $=0.48$
Axis 2: $\left(\frac{\lambda_{2}-\lambda_{3}}{\lambda_{2}}=.07\right)$; modified rate $=0.22$.
Cumulated modified rate for axes 1 and $2=0.70$.
After axis 4 , variances decrease regularly and the differences are small.

1	0.4004	6.41	0.48
2	0.3512	5.62	0.22
3	0.3250	5.20	0.12
4	0.3081	4.93	0.07
5	0.2989	4.78	0.05
6	0.2876	4.60	0.03

Cumulated modified rate for for axes 1, 2 and $3=82 \%$

Guide for interpreting an axis

Interpreting an axis amounts to finding out what is similar, on the one hand, between all the elements figuring on the right of the origin and, on the other hand between all that is written on the left; and expressing with conciseness and precision, the contrast (or opposition) between the two extremes.

Benzécri (1992, p. 405)
For interpreting an axis, we use the method of contributions of points and deviations.
Baseline criterion = average contribution $=100 / 29 \rightarrow 3.4 \%$
The interpretation of an axis is based on the categories whose contributions to axis exceed the average contribution.

Interpretation of axis 1		- TV (31\%) left	right
- Television	1Axis 2 Romance	TV-News TV-Soap	8.4
- Art	R-Soan	TV-Nature 4.9	
${ }^{\text {A }}$ Alat out		TV-Comedy	4.9
Documentary	-0.5 PortraitArt	- Film (35\%)	
		Cost. Drama 12.7 Comedy	6.8
		Romance	5.5
		Documentary 5.4	
		Horror	3.8
		Art (19\%)	
		Portrait 6.3	
		Modern	5.0
- FrenchRest	-0.5\|ndianRest	Renaissance 3.0	
	- ModernArt	AEat out (15\%)	
RenaissanceArt		French Rest. 8.2	

14 categories selected for the interpretation of axis 1: sum of contributions $=89 \% \rightarrow$ good summary

- Axis 1 opposes matter-of-fact (and traditional) tastes to fiction world (and modern) tastes.
- Axis 2 opposes popular to sophisticated tastes.
- Axis 3 opposes outward dispositions to inward ones.

Supplementary individuals

Plane 1-2. Cloud of 38 Indian immigrants with its mean point (\star).

LOCATE YOURSELF

Supplementary variables

	weight	Axis 1	Axis 2	Axis 3
Men	513	-0.178	-0.266	+0.526
Women	$702+0.130$	+0.195	-0.384	
$18-24$	93	+0.931	-0.561	+0.025
$25-34$	248	+0.430	-0.322	-0.025
$35-44$	258	+0.141	-0.090	+0.092
$45-54$	191	-0.085	-0.118	-0.082
$55-64$	183	-0.580	+0.171	-0.023
≥ 65	242	-0.443	+0.605	+0.000

Income				
	weight	Axis 1	Axis 2	Axis 3
$<\$ 9000$	231	+0.190	+0.272	+0.075
$\$ 10-19000$	251	-0.020	+0.157	-0.004
$\$ 20-29000$	200	-0.038	-0.076	+0.003
$\$ 30-39000$	122	-0.007	-0.071	-0.128
$\$ 40-59000$	127	+0.017	-0.363	+0.070
$>\$ 60000$	122	-0.142	-0.395	-0.018
"unknown"	162	-0.092	+0.097	-0.050

As a rule of thumb:

- a deviation greater than 0.5 will be deemed to be "notable"; - a deviation greater than 1 , definitely "large".

Supplementary questions in plane 1-2 (top), and in plane 2-3 (bottom) (cloud of categories).

IV — What is Cluster Analysis?

Reference:
B. Le Roux, L’analyse géométrique des données multidimensionnelles, Dunod 2014, Chapters 10 \& 11.

IV.1. The Aim of Cluster Analysis

Construct homogeneous clusters of objects (in GDA subclouds of points) so that:

- objects within a same cluster are as much similar as possible: compactness criterion;
- objects belonging to different clusters are as little similar as possible: separability criterion;
The greater the similarity (or homogeneity) within a cluster and the greater the difference between clusters the better the clustering.
heterogeneity between clusters - homogeneity within clusters

Types of Clustering

(1) algorithms leading to partitions.

Partitional clustering decomposes a data set into a set of disjoint clusters.
two following requirements:

1) each group contains at least one point,
2)each point belongs to exactly one group. clustering around moving centers or K-means cluster analysis.
(2) algorithms leading to hierarchical hierarchy (the paradigm of natural sciences): system of nested clusters represented by a hierarchical tree or dendrogram.

- ascending algorithms (AHC)
- descending algorithms (segmentation methods):
problems of discrimination and regression by gradual
seamentation of the set of obiects \rightarrow hinarv decisinn tree

The methods of type 1 are geometric methods.
The method of type AHC is geometric if the distance is Euclidean and the aggregation index is the variance index.

The methods of type "segmentation" are not geometric.

The number of partitions into k clusters of n objects

n		k	
5 objects	into	2 clusters	$=$
10	15		
10 objects	into	2 clusters	$=$
10 objects	into	5 clusters	$=$

it is impossible to enumerate all the partitions of a set of n individuals into k clusters

IV.2. Partition of a Cloud: Between- and Within-variance

- Subclouds
\mathcal{A} : subcloud of 2 points (dipole) \{i1, i2\}
\mathcal{B} : subcloud of 1 point \{i6\}
\mathcal{C} : subcloud of 7 points \{i3, i4, i5, i7, i8, i9, i10\}

Partition of a cloud into 3 subclouds: \mathcal{A}, \mathcal{B} and \mathcal{C}.

3 mean points A, B, C with weights 2, 1, 7.

By grouping:
— points "average up"
— weights add up

	\|weights	${ }^{\text {Coordinates }}$	variances
A	$n_{A}=2$	-11	10
B	$n_{B}=1$	-8 2	
C	$n_{C}=7$	8.8572 .857	46.5
	$n=10$	$\bar{x}_{1}=6 \bar{x}_{2}=0$	34.

The mean of the variances of subclouds is the within-variance

Between-cloud

The 3 mean points ($\mathrm{A}, 2$), ($\mathrm{B}, 1$) et ($\mathrm{C}, 7$) define the between-cloud.

The between-cloud is a weighted cloud;

- its total weight is $n=10$;
- its mean point is G;
- its variance is $\frac{2}{10}(\mathrm{GA})^{2}+\frac{1}{10}(\mathrm{~GB})^{2}+\frac{7}{10}(\mathrm{GC})^{2}=57.4$ and called between-variance

Contributions of a subcloud

The contribution of a subcloud is the sum of the contributions of its points.
The within-contribution of a subcloud is the product of its weight by its variance and divided by $V_{\text {cloud }}$.

- Example: subcloud \mathcal{A}

$$
\operatorname{Ctr}_{i 1}=\frac{\frac{1}{10}\left(\mathrm{GM}^{i 1}\right)^{2}}{92}=\frac{\frac{1}{10} \times 180}{92}=\frac{18}{92} ; \quad \operatorname{Ctr}_{i 2}=\frac{\frac{1}{10}\left(\mathrm{GM}^{i 2}\right)^{2}}{92}=\frac{\frac{1}{10} \times 100}{92}=\frac{10}{92}
$$

- contribution of the subcloud: $\operatorname{Ctr}_{\mathcal{A}}=\frac{18}{92}+\frac{10}{92}=\frac{28}{92}$
- contribution of the mean point: $\mathrm{Ctr}_{\mathrm{A}}=\frac{\frac{2}{10} \times 130}{92}=\frac{26}{92}$
- within-contribution: $\frac{\frac{2}{01} \times 10}{92}=\frac{2}{92}$

Huyghens theorem

The contribution of a subcloud is the sum of the contribution of its mean point and of its within-contribution.

Example: Subcloud \mathcal{A}
$\operatorname{Ctr}_{\mathcal{A}}=\operatorname{Ctr}_{\mathrm{A}}+$ within-contribution
$\frac{28}{92}=\frac{26}{92}+\frac{2}{92}$

Between-within decomposition of variance

	$\mathrm{Ctr} \times V_{\text {cloud }}$		
\mathcal{A}	mean points	within	subclouds
\mathcal{B}	26.0	2.0	28
\mathcal{C}	20.0	0	20
Total	11.4	32.6	44
	57.4	34.6	92
Variance	between	within	total

Within-variance
$=$ sum of within-contributions $\times V_{\text {cloud }}$
$=$ weighted mean of variances of subclouds $\left(\frac{2}{10} \times 10+0+\frac{7}{10} \times 46.6\right)$
$=34.6$
Total variance = between-variance + within-variance

$$
\eta^{2}=\frac{\text { between-variance }}{\text { total variance }} \text { (eta-square) }
$$

Subcloud of 2 points (dipole)

A and B weighted by $n_{A}=2$ and $n_{B}=1$ with mean point G^{\prime}. Weight of dipole : $\widetilde{n_{A B}}=1 /\left(\frac{1}{n_{A}}+\frac{1}{n_{B}}\right)$
Absolute contribution: $p \times d^{2}$ with $p=\frac{\widehat{n_{A B}}}{n}$ (relative weight) and $d^{2}=$ AB^{2} (square of the deviation).
Example: dipole $\{\mathrm{A}, \mathrm{B}\}$.
$\mathrm{AB}^{2}=290$
$\widetilde{n_{A B}}=\frac{1}{\frac{1}{T}+\frac{1}{2}}=2 / 3, p=\frac{2 / 3}{10}=0.06667$
Absolute contribution:

$$
2 \overrightarrow{\mathrm{G}^{\prime} \mathrm{A}}=-\overrightarrow{\mathrm{G}^{\prime} \mathrm{B}}
$$

$0.06667 \times 290=19.33$

Property

The absolute contribution of a dipole is the absolute contribution of the subcloud of its two points.

IV.3. K-means Clustering

or aggregation around moving centers
(1) Fix the number of clusters, say C;
(2) Choose (randomly or not) C initial class centers;
(3) Assign each object to the closest center \rightarrow new clusters;
(9) Determine the centers of the new clusters;
(3) Repeat the assignment;
(6) Stop the algorithm when 2 successive iterations provide the same clusters.

Choose 2 initial centers: $\mathrm{M}^{c_{0}}$ and $\mathrm{M}^{c_{0}^{\prime}}$

IV.4. Ascending Hierarchical Clustering

 (AHC)Clusters =
either the objects to be clustered (one-element class), or the clusters of objects generated by the algorithm.

At each step, one groups the two elements which are the closest, hence the representation by a hierarchical tree or dendrogram.

We have to define the notion of "close", that is, the aggregation index.

Ascending/agglomerative Hierarchical Clustering:

 starting with the basic objects (one-element clusters) proceed to successive aggregations until all objects are grouped in a single class.Once an aggregation index has been chosen, the basic algorithm of AHC is as follows:
Step 1. From the table of distances between the n objects, calculate the aggregation index for the $n(n-1) / 2$ pairs of one-element clusters, then aggregate a pair of clusters for which the index is minimum: hence a partition into $J-1$ clusters.
Step 2. Calculate the aggregation indices between the new class and the $n-2$ others, and aggregate a pair of clusters for which the index is minimum \rightarrow second partition into $n-2$ clusters in which the first partition is nested.
Step 3. Iterate the procedure until a single class is reached.

Target example: hierarchical tree

IV.5. Euclidean Clustering

(1) Objects = points of Euclidean cloud.
(2) Aggregation index = variance index, that is, the contribution of the dipole of the class centers (Ward index).

Grouping property

If 2 clusters are grouped, the between-variance decreases from an amount equal to the contribution of the dipole constituted of the centers of the 2 grouped clusters.

Basic Algorithm

- Step 1. Calculate the contributions of the $9 \times 10 / 2=45$ dipoles
Example: For dipole $\{i 1, i 2\}$:
$\widetilde{n_{12}}=1 /\left(\frac{1}{1}+\frac{1}{1}\right)=0.5$;
squared distance $=(0-6)^{2}+(-12+10)^{2}=40$;
\rightarrow absolute contribution of dipole $=\frac{0.5}{10} \times 40=2$.

	$i 1$	$i 2$	$i 3$	$i 4$	$i 5$	$i 6$	$i 7$	$i 8$	$i 9$
$i 2$	2								
$i 3$	11.6	4							
$i 4$	6.8	3.2	4						
$i 5$	14.4	6.8	2	2					
$i 6$	13	17	27.4	10.6	20.2				
$i 7$	13	10.6	12.2	2.6	5.8	5.2			
$i 8$	14.6	9.8	8.2	1.8	2.6	10	0.8		
$i 9$	29.2	20.8	13.6	8	5.2	19.4	5	2.6	
$i 10$	31.4	21.8	13	9	5	23.2	6.8	3.6	0.2

Minimum index 0.2 for the pair of points $\{i 9, i 10\}$ which are aggregated (fig. 1), hence the mean point $\ell 11$ and a derived cloud of 9 points (fig. 2).

- Step 2. Calculate the aggregation index between the new point ℓ_{11} and the 8 other points.
New minimum 0.8 for $\{i 7, i 8\}$ which aggregated (fig. 2), hence the new point $\ell 12$ and a derived cloud of 8 points (fig. 3).

	$i 1$	$i 2$	$i 3$	$i 4$	$i 5$	$i 6$	$i 7$	$i 8$
ℓ_{11}	40.33	28.33	17.67	11.27	6.73	28.33	7.8	4.07

Figure 2

- Step 3. Iterate the procedure

Aggregation index between $\ell 12$ and the 7 other points

	$i 1$	$i 2$	$i 3$	$i 4$	$i 5$	$i 6$	$\ell 11$
$\ell 12$	18.13	13.33	13.33	2.67	5.33	9.87	8.2

Minimum $=2$ for $\{i 1, i 2\},\{i 3, i 5\}$ and $\{i 4, i 5\}$, aggregation of $i 1$ and $i 2$ (fig. 3), hence the point $\ell 13$ and a cloud of 7 points (fig. 4).

Figure 3

- Step 4. Iterate the procedure

Aggregation index between $\ell 13$ and the 6 other points

	$i 3$	$i 4$	$i 5$	$i 6$	$\ell 11$	$\ell 12$
$\ell 13$	9.73	6.00	13.47	19.33	50.5	22.6

Minimum of index $=2$ for the two pairs $\{i 3, i 5\}$ and $\{i 4, i 5\}$. Aggregation of $i 3$ and $i 5$ (fig. 4), hence the point $\ell 14$ and the cloud of 6 points (fig. 5).

- Step 5. Aggregation index between $\ell 14$ and the 5 other points | | $i 4$ | $i 6$ | $\ell 11$ | $\ell 12$ | $\ell 13$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| $\ell 14$ | 3.33 | 31.07 | 17.33 | 13.00 | 16.4 |\rightarrow aggregation of $\ell 12$ and $i 4$ at level 2.67 (fig. 5), hence the point $\ell 15$ and the cloud of 5 points (fig. $6)$.

- Step 6. Aggregation index between $\ell 15$ and the 4 other points

\quad	6.6	$\ell 11$	$\ell 13$	$\ell 14$
$\ell 15$	12.03	12.49	20.61	11.33

- Step 7. Aggregation index between $\ell 16$ and the 3 other points | 6 | $\ell 11$ |
| :---: | :---: |
| $\ell 16$ | |
| 16 | 21.67 |
| 15.57 | $\ell 0.86$ |\rightarrow aggregation of $\ell 16$ and $\ell 11$ at level 15.57 (fig. 7), hence the point $\ell 17$ and the cloud of 3 points (fig. 8).

- Step 8.

Figure 8

The three-class partition $\mathcal{A}(\ell 14), \mathcal{B}(i 6), \mathcal{C}(\ell 17)$ (already studied) with mean points $\mathrm{A}(\ell 13), \mathrm{B}(i 6), \mathrm{C}(\ell 17)$ (fig. 8).

- Step 9.

Table of the within-contributions of the 3 pairs of points

(distance) 2	weight	Contribution
$\mathrm{AB}^{2}=290$	$\widetilde{n_{\mathrm{AB}}}=\frac{1}{\frac{1}{2}+\frac{1}{7}}=2 / 3$	$\operatorname{Cta}_{(\mathrm{A}, \mathrm{B})}=\frac{2 / 3}{10} \times 290=19.33$
$\mathrm{AC}^{2}=226.33$	$\widetilde{n_{\mathrm{AC}}}=\frac{1}{\frac{1}{2}+\frac{1}{7}}=14 / 9$	$\mathrm{Cta}_{(\mathrm{A}, \mathrm{C})}=\frac{14 / 9}{10} \times 226.33=35.21$
$\mathrm{BC}^{2}=284.90$	$\widetilde{n_{\mathrm{BC}}}=\frac{1}{\frac{1}{1}+\frac{1}{7}}=7 / 8$	$\mathrm{Cta}_{(\mathrm{B}, \mathrm{C})}=\frac{7 / 8}{10} \times 284.90=24.93$

At this step, we group A and B at level 19.33 (fig. 9).

Successive Steps of the AHC

ℓ	δ_{ℓ}	clusters		n	class description
$\ell 19$	38.095	$\ell 18$	$\ell 17$	10	i9 i10 i3 i5 i4 i 7 i8 i6 i1 i2
<18	19.333	$\ell 13$	e6	3	i6 il_{1} i2
$\ell 17$	15.571	$\ell 16$	$\ell 11$	7	i9 i10 i3 i5 i4 i7 i8
$\ell 16$	11.333	¢15	$\ell 14$	5	i3 i5 i4 i7 i8
$\ell 15$	2.667	$\ell 12$	¢4	3	i4 17 i8
¢14	2.	$\ell 5$	¢3	2	i3 i5
$\ell 13$	2.	$\ell 2$	<1	2	11 i2
<12	0.8	$\ell 8$	¢7	2	17 i8
$\ell 11$	0.2	$\ell 10$	¢9	2	i9 110

Between Var		η_{ℓ}^{2}
$\ell 19$		
$\ell 18$	38.10	414
$\ell 17$	57.43	624
$\ell 16$	73.00	793
¢15	84.33	917
$\ell 14$	87.00	957
$\ell 13$	89.00	967
$\ell 12$	91.90	. 989
$\ell 11$	91.80	. 998
	92.0	1

Sum of the 9 level indices = 92 (variance of the cloud).
Between-variance of the 2 -class partition $=38.095$.
Between-variance of the 3-class partition
$=38.095+19.333=57.43$, etc.

IV.6. Interpretation of clusters

Active variables then supplementary variables

Categorical variables

1. descriptive criterion:

Categories over-represented:
The relative frequency of the category in the cluster (f_{c}) is 5% higher than the frequency in the whole set (f) or is twice the one in the whole set.

$$
f_{c}-f>0.05 \quad f_{c} / f>2
$$

Categories under-represented: $f_{c}-f<-0.05 \quad f_{c} / f<2$
2. inductive criterion:

The hypergeometric test of comparison of the frequency to the reference frequency is significant.

Numerical variables

Variables retained for the interpretation:

1. descriptive criterion:

$$
\frac{\text { mean for the cluster-mean for the overall set }}{\text { standard deviation for the whole set }} \geq 0.5
$$

or

$$
\frac{\text { mean for the cluster-mean for the overall set }}{\text { standard deviation for the whole set }} \leq-0.5
$$

2. inductive criterion:

The combinatorial test of comparison of the mean in the cluster to the overall mean is significant.

IV.7. Other Aggregation Indices

- Minimal jump. the smallest distance between the elements of the 2 clusters = single linkage clustering.
- Maximal jump. The largest distance between elements of the two clusters= diameter index, or complete linkage clustering.
- Mean distance. Weighted mean of distances between the points of 2 clusters = average linkage clustering.

IV.8. Divisive Hierarchical Clustering

Sart with one cluster and, at each step, split a cluster until only one-element clusters remain. In this case, we need to decide which cluster will be split at each step and how to do the splitting.
Methods: CHAID and CART

V - Specific MCA

and
 Class Specific Analysis (CSA)

This text is adapted from Chapter 3 (§3.3) of the monograph Multiple Correspondence Analysis (QASS series n¹63, SAGE, 2010)

V.1. Introduction

- Specific MCA (SpeMCA) consists in restricting the analysis to categories of interest.
- Class Specific Analysis (CSA) consists in analyzing a subset of individuals by taking the whole set of individuals as a reference.

V.2. Specific MCA

The active categories are the categories of interest. The excluded categories, called passive categories, are:

- Infrequent categories
- remote from the center
- contributing too much to the variance of the question
- too influential on the determination of axes
- Junk categories: categories of no-interest not representable by a single point

Cloud of individuals

If for active question q,

- i chooses active category k and i^{\prime} active category k^{\prime}, then the distance is unchanged:

$$
d_{q}^{2^{\prime}}=d_{q}^{2}\left(i, i^{\prime}\right)=\frac{1}{f_{k}}+\frac{1}{f_{k^{\prime}}}
$$

- i chooses active category k and i^{\prime} passive category k^{\prime} :

$$
d_{q}^{2}\left(i, i^{\prime}\right)=\frac{1}{t_{k}}\left(\text { dropping } \frac{1}{t_{k^{\prime}}}\right)
$$

Geometric viewpoint.
\longrightarrow projection of the cloud onto a subspace of interest.

Cloud of categories

subcloud of categories of active questions with weights and distances unchanged.
K^{\prime} : set of active categories of active questions
$K^{\prime \prime}$: subset of passive modalities of active questions
K : set of active and passive categories of active questions
Q^{\prime} : set of active questions without passive categories

Properties

- Dimension of the cloud: $K^{\prime}-Q^{\prime}$
(number of active categories minus number of questions without passive categories).
- Specific overall variance:

$$
\frac{K^{\prime}}{Q}-\sum_{k \in K^{\prime}} \frac{f_{k}}{Q}=\text { sum of eigenvalues }
$$

- Modified rates:
calculate $\bar{\lambda}=$ specific variance divided by the number of dimensions of the cloud;
modified rates $=\frac{(\lambda-\bar{\lambda})^{2}}{\sum(\lambda-\bar{\lambda})^{2}}\left(\sum\right.$ over eigenvalues $\left.>\bar{\lambda}\right)$.

Principal axes and principal variables

- Coordinates of individuals on an axis :

Mean $=0 \quad$ Variance $=$ specific eigenvalue

- Coordinate of categories on an axis:
- Mean of coordinates of active and passive categories (weighted by the relative weight f_{k} / Q) $=0$
- Raw sum of squares of coordinates of active categories (weighted by $p_{k}=f_{k} / Q$) $=\lambda$

Fundamental properties of standard MCA are preserved:

- the principal axes of the cloud of individuals are in a one-one correspondence with those of the cloud of categories,
- the two clouds have the same eigenvalues.
- Link between the two clouds:

$$
\bar{y}=\sqrt{\lambda} y \quad \frac{(y: \text { principal coordinate of category } k}{\bar{y}: \text { principal coordinate of category mean-point } k)}
$$

V.3. Class Specific Analysis (CSA)

Study of a class (subset) of individuals with reference to the whole set of individuals.

We seek to

- determine the specific features of the class,
- compare the class subcloud with the initial cloud.

This is possible only if the class subcloud and the initial cloud are in the same Euclidean space.

Class specific cloud of individuals

The distance between 2 individuals of the class is the one defined from the whole cloud.

Class specific cloud of categories

The distance between two categories points depends on

- the relative frequencies of the categories in the class,
- the relative frequencies of the categories in the whole set,
- the conjoint frequency of the pairs of categories in the class.

Principal axes and principal variables

- Coordinates of individuals on an axis :

$$
\text { Mean }=0 \quad \text { Var }=\text { specific eigenvalue }
$$

- Coordinate of categories on an axis (weighted by the relative weight in the whole set):

$$
\text { Mean }=0 \quad \text { Var }=\text { specific eigenvalue }
$$

